• Title/Summary/Keyword: Implant driver

Search Result 23, Processing Time 0.026 seconds

THE EFFECTS OF THE DESIGN OF ABUTMENT SCREW DRIVER ON THE AMOUNT OF TIME FOR INSERTION OF SCREW DRIVER INTO ABUTMENT SCREW HEAD (임플랜트 지대주 나사와 드라이버의 설계가 보철물 장착 및 철거 시간에 미치는 영향에 관한 연구)

  • Kim Seong-Kyun
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.43 no.2
    • /
    • pp.258-263
    • /
    • 2005
  • Statement of problem. Implant screw loosening has been remained a problem in implant prosthodontics. The time needed to insert screw driver into abutment screw head should be shortened for the purpose of decreasing the chair time. Purpose. The purpose of this study was to investigate the effects of the design of abutment screw driver on the amount of time for insertion of screw driver into abutment screw head. Material and methods. Hexagonal and rectangular types of abutment screw drivers were used. The original abutment screw drivers were modified by grinding acute angle of the screw driver tip (modified drivers). Group 1 : hexagonal type abutment screw and original driver Group 2 : hexagonal type abutment screw and modified driver Group 3 : rectangular type abutment screw and original driver Group 4 : rectangular type abutment screw and modified driver UCLA lab analogues were located in acrylic resin block. The angulations of them were 0 and 20 degrees. The times needed for insertion were measured. Group 1 and 3 were used as controls. Results. 1. Group 2 showed shorter insertion time than group 1, regardless of implant angulations (p<.05). 2. Group 4 showed shorter insertion time than group 3, regardless of implant angulations (p<.05). Conclusion. Modified abutment screw drivers required less amount of time to insert screw driver into abutment screw head. Modification of abutment screw driver was beneficial.

The change of rotational freedom following different insertion torques in three implant systems with implant driver

  • Kwon, Joo-Hyun;Han, Chong-Hyun;Kim, Sun-Jai;Chang, Jae-Seung
    • The Journal of Advanced Prosthodontics
    • /
    • v.1 no.1
    • /
    • pp.37-40
    • /
    • 2009
  • STATEMENT OF PROBLEM. Implant drivers are getting popular in clinical dentistry. Unlike to implant systems with external hex connection, implant drivers directly engage the implant/abutment interface. The deformation of the implant/abutment interface can be introduced while placing an implant with its implant driver in clinical situations. PURPOSE. This study evaluated the change of rotational freedom between an implant and its abutment after application of different insertion torques. MATERIAL AND METHODS. Three kinds of internal connection implants were utilized for the current study($4.5{\times}12\;mm$ Xive, $4.3{\times}11.5\;mm$ Inplant Magicgrip, $4.3{\times}12\;mm$ Implantium MF). An EstheticBase, a 2-piece top, a Dual abutment was used for its corresponding implant system. The rotational freedom between an implant and its abutment were measured before and after applying 45, 100 Ncm insertion torque. Repeated measures ANOVA was used for statistical analysis. RESULTS. Under 45 Ncm insertion torque, the rotational freedom between an implant and its abutment was significantly increased in Xive(P = .003). However, no significant change was noted in Inplant Magicgrip and Implantium MF. Under 100 Ncm torque, both in Xive(P = .0005) and Implatium MF(P = .03) resulted in significantly increased rotational freedom between the implant and its abutment. DISCUSSION. The design of the implant/implant driver interface effectively prevented the deformation of implant/abutment interface. Little change was noted in the rotational freedom between an implant and its abutment, even though the insertion torque was far beyond clinical application. CONCLUSIONS. The implant/abutment joint of internally connecting implants were quite stable under insertion torque in clinical situation.

A study on the compatibility of implant drivers (임플란트 드라이버의 호환성에 대한 연구)

  • Kim, Min-Soo;Lee, Jong-Hyuk
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.52 no.1
    • /
    • pp.34-41
    • /
    • 2014
  • Purpose: In this study, the diameter of each implant driver was measured and compared to find out the compatibility of implant drivers. Materials and methods: Drivers from 12 implant systems being used in Dankook University Dental Hospital were included in this study. The shapes of the implant drivers were segregated, and the effective length and the diameter of upper, middle, lower part of driver tips were measured (n=10). The measured data were mathematically analyzed for its compatibility. Results: A driver with the smallest diameter (1.17 mm) had the highest compatibility at the upper part of driver tip. This driver could be used for a bigger driver up to 1.35 mm in diameter. There were several driver groups which had the same diameter so as to be interchangeable each other. In the middle part, the smallest diameter measured was 1.2 mm and this was able to replace a driver up to 1.40 mm diameter. Since the diameter generally became thicker from upper part (the tip of driver) to the lower part (the shank of driver), some drivers with bigger diameter at the upper part so which was failed to show any compatibility became compatible with a driver which had smaller diameter at the upper part but wider in the middle part. The compatibility of torx shape drivers were affected by the inner diameter of the drivers not only by the outer diameter. Furthermore, the inner diameter of torx drivers decided the compatibility between torx and hex drivers. Conclusion: From the study it was found that compatibility in drivers existed among certain implant systems and to check its compatibility the diameter at a certain effective length should be measured. However, there has been not enough studies about long-term use of compatible drivers, so effects of using compatible drivers on drivers and implants are unknown. Therefore, usage in inevitable cases only is recommended and further study is needed.

Accuracy of different electronic torque drivers: A comparative evaluation

  • Ko, Byeong-Dae;Son, KeunBaDa;Kang, Seok Hyon;Lee, Kyu-Bok
    • The Journal of Advanced Prosthodontics
    • /
    • v.11 no.6
    • /
    • pp.350-357
    • /
    • 2019
  • PURPOSE. This study aims to evaluate the loosening torque on the implant fixture, and to assess the accuracy of difference electronic torque drivers. MATERIALS AND METHODS. Three electronic torque drivers were used to measure the loosening torque on the implant system (AnyOne; MegaGen). The implant fixtures were divided among the 3 electronic torque driver types (W&H, SAESHIN, and NSK group) and 9 for each group. The screws were fastened at the implant fixture by three electronic torque drivers using the tightening torques recommended by the manufacturers of the drivers. After 10 minutes, the screws were again fastened at the implant fixture with equal torque. Then, the loosening torques were measured with an MGT12 torque gauge (MARK-10, Inc.). This measurement procedure was repeated 10 times under loosening torques of 15 Ncm, 25 Ncm, and 35 Ncm. In the statistical analysis, all values of loosening torque were analyzed with the one-way ANOVA and Kruskal-Wallis test (α=.05) for comparative evaluation. RESULTS. There were significant inter-group differences at loosening torques of 15 Ncm and 25 Ncm (P<.05). The accuracy of the NSK driver was the highest, followed by SAESHIN and W&H. There was no significant difference between NSK and W&H at 35 Ncm (P>.05). The SAESHIN driver showed the closest loosening torque at 35 Ncm. CONCLUSION. The most accurate loosening torques were SAESHIN at 35 Ncm, and NSK at 15 Ncm and 25 Ncm. Since the loosening torque may vary depending on the tightening torques and electronic torque drivers, periodic calibration of the electronic torque driver is recommended.

A STUDY ON SURFACE ALTERATION OF IMPLANT SCREWS AFTER FUNCTION

  • Han, Myung-Ju;Chung, Chae-Heon;Choi, Han-Cheol
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.40 no.3
    • /
    • pp.275-286
    • /
    • 2002
  • Statement of problem. Surface alteration of the implant screws after function may be associated with mechanical failure. Theses metal fatigue appears to be the most common cause of structural failure. Purpose. The purpose of this study was to evaluate surface alteration of the implant screws after function through the examination of used and unused implant screws in SEM(scanning electron microscope). Materials and methods. In this study, abutment screws(Steri-oss, 3i), gold retaining screw(3i) and titanium retaining screw(3i) were retrieved from patients. New, unused abutment and retaining screws were prepared for control group. Each of the old, used screws was retrieved with a screwdriver. And retrieved implant complex of Steri-oss system was prepared for this study. Then, SEM investigation and EDS analysis of abutment and retaining screws were performed. And SEM investigation of cross-sectioned sample of retrieved implant complex was performed. Results. In the case of new, unused implant screws, as maunfactured circumferential grooves are regularly examined and screw thread are sharply remained. Before ultrasonic cleansing of old, used implant screw, a lot of accumulation and corrosion products were existed. After ultrasonic cleansing of old, used implant screws, circumferential grooves as examined before function were randomly deepened and scratches increased. Also, dull screw thread was examined. More surface alterations after function were examined in titanium screw than gold screw. And more surface alteration was examined when retrieved with driver than retrieved without driver. Conclusions. These surface alteration after function may result in the screw instability. Regularly cleansing and exchange of screws was recommended. We recommend the use of gold screw rather than titanium screw, and careful manipulation of the driver.

A STUDY ON THE TORQUE VALUES IN THE DIFFERENT IMPLANT SYSTEM (수종 임플랜트 시스템에서의 회전력에 관한 연구)

  • Moon, Ick-Hun;Chung, Chae-Heon
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.33 no.2
    • /
    • pp.335-353
    • /
    • 1995
  • The purpose of this study was to the determine the optimal torques values to tighten the retaining screw. 3-different implant system tested were as follows : Branemark implant system$(3.75mmD{\times}100mm)$, Steri-Oss implant system$(3.8mmD{\times}10mm)$. One fixtures of each implant system was mounted into the epoxy resin block and abutment/superstructure complex was constructed. Eighty dental college students(male : 40, female : 40) of Chosun University were selected and were asked to tighten the retaining screws. Abutment/superstructure complex of each implant system was tightened to the maximum torque by use of hand-held screw driver, and then torque value was measured with torque value was measured with torque driver(Tohnichi torque driver, model 20 FTD, Tohnichi MFG, Co., LTD., Tokyo, Japan). Abutment/superstructure complex of each implant system was titghtened to each torque of 10 N-cm, 20 N-cm and 30 N-cm, and then the dynamic load(vertical & diagonal load) was applied to the abutment / superstructure complex. The gap between abutment/superstrure in each implant system was measured with 3-dimensional measuring microscope(model No. 850, Germany). The results were as follow : 1. Torque values according to the individual subjects showed wide range. 2. Torque values according to sex showed statistical significant difference. Those are as follows : in case of male, $9.38{\pm}2.93$ N-cm ; incase of female, $7.80{\pm}2.25$ N-cm. 3. Torque values according t implant systems showed statistical significant difference. Those are as follows : in ase of Branemark implant system, $6.54{\pm}1.54$ N-cm : in ase of Steri-Oss implant system, $10.1{\pm}2.88$ N-cm ; in case of IMZ implant system, $9.18{\pm}2.17$ N-cm. 4. The more torque value of tightening screw was increased, the less the gap was after the vertical and diagonal loading. 5. The gap after the diagonal loading was greater than that after the vertical loading. 6. The magnitude of gap between abutment/superstructure in order of IMZ, Steri-Oss, Branemark implant system after the verical and diagonal loading. 7. The gap under the diagonal loading after applying 30 N-cm torque showed no statistical significant difference in cases of the Branemark system and the Steri-Oss implant system but it showed significant different in case of the IMZ implant system.

  • PDF

Comparison of the torque stability of Implant Torque Controllers

  • Kim, Dae-Gon;Cho, Lee-Ra;Park, Chan-Jin
    • Journal of Korean Dental Science
    • /
    • v.2 no.1
    • /
    • pp.19-27
    • /
    • 2009
  • Tightening of the screws in implant restorations should be accurate and precise. If applied torque is too low, screw loosening would be occurred. With too high torque, the screw fracture might take place. Various torque generating devices are developed and employed to apply a proper torque. The purpose of this investigation was to determine and compare the accuracy of the torque controllers. In this study, 4 types of torque controllers were used; electronic torque controller, torque limiting device, torque indicating device and contra angle torque driver. Digital torque gauge was employed to measure the de-torque value. Thirty cycles of tightening and loosening were done with each torque controller. All implant torque controllers have shown slight errors and deviations. The torque liming device exhibited the most accurate data. No significant difference was found among the mean de-torque values of the electronic torque controller, torque indicating device and contra angle torque driver. In the limitation of this study, it would be recommended that the implant torque controllers should be checked whether uniformed and precise torque can be generated and a measuring error should be corrected.

  • PDF

SINGLE TOOTH IMPLANT RESTORATION USING COMBINATION IMPLANT CROWN : A CASE REPORT (콤비네이션 임프란트 크라운(Combination Implant Crown)을 이용한 단일치아의 임프란트 보철수복증례)

  • Kim, Rae-Gyoung;Song, Eon-Hee;Choi, Byeong-Gap;Kim, Hyoun-Chull;Ahn, Hyun-Jeong
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.37 no.3
    • /
    • pp.375-382
    • /
    • 1999
  • The purpose of this article is to present the clinical and laboratory procedures for single tooth restoration using 'Combination Implant Crown'. It is cemented on implant abutment and that abutment is screw-retained over implant body. This type of implant restorations has the advantages of cement-retained restoration while being antirotational and retrievable. And, more esthetic and functional result can be achieved by minimizing the size of access hole. The results were as follows : 1. Preparation of abutment below the cuff line should be avoided 2. Axial reduction of implant abutment should not be excessive because it may weaken the abutment 3. More esthetical and functional occlusal surface was achieved with a minimal access hole which is slightly larger than the diameter of hex driver to enable future total retrievability. 4. Combination Implant Crown has the advantages of both the cement-retained and screw-retained type implant restoration. 5. Cementation between implant crown and abutment reduces screw loosening through even force distribution

  • PDF

Impact on Retrievability by Cement Variety for Implant Restorations Equipped with a Lingual Slot

  • Lee, Ji-Hong;Lee, Kyu-Bok
    • Journal of Korean Dental Science
    • /
    • v.11 no.1
    • /
    • pp.14-20
    • /
    • 2018
  • Purpose: The purpose of this study is to measure and compare the removal torques of different cements applied in attachments of zirconia restorations on titanium (Ti) abutments fitted with retrievable cement-type slot (RCS) on the lingual side for the better retrievablity by use of a slot driver. Materials and Methods: Three types of cements were used in the experiment: two permanent cements in $RelyX^{TM}$ U200 (RU) (3M ESPE) which is a resin cement and $FujiCem^{TM}$ (FC) (GC) which is a resin-modified glass ionomer cement, and a temporary cement in $Freegenol^{TM}$ temporary cement (TC) (GC). Measurements of removal torques were conducted as follows; an attached sample was fixed on the equipment customized for the experiment; a slot driver was connected to a MGT12 (Mark-10 Corp.), a torque measurement instrument; the sample had the driver fitted to its RCS and then was rotated until the it was removed; and finally, the maximum torque value was recorded. Result: As for the removal torque measurement results, the average values were $47.9{\pm}2.6Ncm$ for RU, $43.4{\pm}1.5Ncm$ for FC, and $20.9{\pm}1.0Ncm$ for TC. The statistical analysis using Kruskal-Wallis test yielded the significance probability of P<0.05 (P=0.002), which confirmed the presence of significant differences between the three groups. Conclusion: All three cements exhibit clinically acceptable levels of removal torque when applied to an upper zirconia implant restoration fitted with a lingual slot, with RU and FC, the two permanent cements, having the significantly higher values than that of TC, the temporary cement.

Comparison of Accuracy of Implant Torque Controllers (수종의 임플란트 토크 조절기의 정확성 비교)

  • Kim, Dae-Gon;Cho, Lee-Ra;Park, Chan-Jin
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.24 no.2
    • /
    • pp.157-168
    • /
    • 2008
  • Tightening of the screws in implant restorations should be accurate and precise. If applied torque is too low, screw loosening would be occurred. With too high torque, the screw fracture might take place. Various torque generating devices are developed and employed to apply a proper torque. The purpose of this investigation was to determine and compare the accuracy of the torque controllers. In this study, 4 types of torque controllers were used; electronic torque controller, torque limiting device, torque indicating device and contra angle torque driver. Digital torque gauge was employed to measure the de-torque value. Thirty cycles of tightening and loosening were done with each torque controller. All implant torque controllers have shown slight errors and deviations. The torque liming device exhibited the most accurate data. No significant difference was found among the mean de-torque values of the electronic torque controller, torque indicating device and contra angle torque driver. In the limitation of this study, it would be recommended that the implant torque controllers should be checked whether uniformed and precise torque can be generated and a measuring error should be corrected.