• 제목/요약/키워드: Implant Metal

검색결과 225건 처리시간 0.3초

3D Reconstruction of 3D Printed Medical Metal Implants (3D 출력 의료용 금속 임플란트에 대한 3D 복원)

  • Byounghun Ye;Ku-Jin Kim
    • KIPS Transactions on Software and Data Engineering
    • /
    • 제12권5호
    • /
    • pp.229-236
    • /
    • 2023
  • Since 3D printed medical implant parts usually have surface defects, it is necessary to inspect the surface after manufacturing. In order to automate the surface inspection, it is effective to 3D scan the implant and reconstruct it as a scan model such as a point cloud. When constructing a scan model, the characteristics of the shape and material of the implant must be considered because it has characteristics different from those of general 3D printed parts. In this paper, we present a method to reconstruct the 3D scan model of a 3D printed metal bone-plate that is one kind of medical implant parts. Multiple partial scan data are produced by multi-view 3D scan, and then, we reconstruct a scan model by alignment and merging of partial data. We also present the process of the scan model reconstruction through experiments.

Effects of abutment diameter, luting agent type, and re-cementation on the retention of implant-supported CAD/CAM metal copings over short abutments

  • Safari, Sina;Ghavam, Fereshteh Hosseini;Amini, Parviz;Yaghmaei, Kaveh
    • The Journal of Advanced Prosthodontics
    • /
    • 제10권1호
    • /
    • pp.1-7
    • /
    • 2018
  • PURPOSE. The aim of this study was to evaluate the effects of abutment diameter, cement type, and re-cementation on the retention of implant-supported CAD/CAM metal copings over short abutments. MATERIALS AND METHODS. Sixty abutments with two different diameters, the height of which was reduced to 3 mm, were vertically mounted in acrylic resin blocks with matching implant analogues. The specimens were divided into 2 diameter groups: 4.5 mm and 5.5 mm (n=30). For each abutment a CAD/CAM metal coping was manufactured, with an occlusal loop. Each group was sub-divided into 3 sub-groups (n=10). In each subgroup, a different cement type was used: resin-modified glass-ionomer, resin cement and zinc-oxide-eugenol. After incubation and thermocycling, the removal force was measured using a universal testing machine at a cross-head speed of 0.5 mm/min. In zinc-oxide-eugenol group, after removal of the coping, the cement remnants were completely cleaned and the copings were re-cemented with resin cement and re-tested. Two-way ANOVA, post hoc Tukey tests, and paired t-test were used to analyze data (${\alpha}=.05$). RESULTS. The highest pulling force was registered in the resin cement group (414.8 N), followed by the re-cementation group (380.5 N). Increasing the diameter improved the retention significantly (P=.006). The difference in retention between the cemented and recemented copings was not statistically significant (P=.40). CONCLUSION. Resin cement provided retention almost twice as strong as that of the RMGI. Increasing the abutment diameter improved retention significantly. Re-cementation with resin cement did not exhibit any difference from the initial cementation with resin cement.

Changes in pre-osteoblast cells associated with non-precious metal cores with dental implants: Pilot test (치과용 임플란트 적용 비귀금속 코어와 관련된 전조골세포의 변화)

  • Park, Jung-Hyun;Kang, Seen-Young;Kim, Jong-Woo;Kim, Jang-Ju;Kim, Woong-Chul;Kim, Ji-Hwan
    • Journal of Technologic Dentistry
    • /
    • 제40권2호
    • /
    • pp.63-69
    • /
    • 2018
  • Purpose: The purpose of this study is to investigate the non-precious metal core materials used in the dental laboratory to fabricate the implant superstructure by CAD / CAM method. And to observe and compare the morphology and distribution of the osteoblasts in relation to implant osseointegration. Methods: In this study, the mandibular right first molar tooth model was selected as an international standard to produce a single core. Using this model, the impression was made with the silicone rubber, the tooth model was scanned, and a single core was designed and 5-axis milling was performed. The materials used were Cobalt-Chromium and Nickel-Chromium, and the cores for dental implant top structures were fabricated according to the procedures of the dental labs. After the fabrication, the marginal area of the core was separated and cell culture experiment was performed. The osteoblast cells used MC3T3-E1, which is currently widely used. For morphological analysis of osteoblasts, cells were posttreated and observed using CLSM (Confocal Laser Scanning Microscope) and compared. Results: The cell adhesion behavior of the specimen surface measured by CLSM was uniformly distributed in specimen A (Cobalt-Chromium) than in specimen B (Nickel-Chromium). The distribution and changes of the cells were different in the two specimens. Conclusion : It is possible to confirm that specimen A (Cobalt-Chromium) is suitable for the living body through adhesion and proliferation of osteoblasts related to implant osseointegration in the non-precious metal superstructure used after implantation. It is considered that it is preferable to use Co-Cr when fabricating the superstructure.

Reduction of Metal Artifact by Using VAT-SEMAC in MRI (VAT-SEMAC을 이용한 보철물에 의한 허상 감소)

  • Kim, Hyung-Tae;Lim, Jong-Nam;Chon, Kwon Su
    • Journal of the Korean Society of Radiology
    • /
    • 제13권2호
    • /
    • pp.227-232
    • /
    • 2019
  • MRI examination for patients with metal objects has in poor image quality. Metallic implants can result in poor image because magnetic susceptibility causes signal loss and distortion and makes poor imaging, which is called magnetic susceptibility artifact or metal artifact. There are several approaches to reduce metal artifacts. In this study, we study the reduction of metal artifact by VAT and SEMAC techniques. A metal implant used for orthopedic surgery was attached to the phatom and the distortion caused by the artifact was measured under T1WI and T2WI protocols. Several techniques of VAT only and VAT and SEMAC for the reduction of metal artifact were compared. The metal artifact showed a reduction of at least 8% to a maximum of 26% in the VAT-SEMAC. The VAT-SEMAC technique can be applied to patients with orthopedic implants to improve image quality. If scan time and image quality are simultaneously considered in VAT-SEMAC technique, metal artifact will be reduced in clinical practice.

Restoration of Mandibular Edentulous Patient By Dental Implant: Case Report

  • Kwon, Ji-Yung;Kim, Yung-Soo
    • The Journal of Korean Academy of Prosthodontics
    • /
    • 제38권3호
    • /
    • pp.360-365
    • /
    • 2000
  • The completely edentulous patient has few treatment options in conventional dentistry. When implants are considered, treatment plans range from a 2-implant overdenture to a completely implant-supported prosthesis. Fixed prosthesis is often the preferred selection of the edentulous patient. fixed full-arch cert amo-metal restorations can be a predictable implant treatment modality for the edentulous patient. Implant-supported fixed prosthesis has several advantages: predictability, fixedness, retrievability, improved function, lower maintenance of prosthesis, long-term published success. Edentulous patients with a severely resorbed mandible often experience problems with their dentures. Treatment concepts involving two to four implants for the support of an overdenture have been proposed. There seems to be no need to insert more than two endosteal implants to support an overdenture, however, long-term prospective studies are needed to support this notion. Using short endosseous implants and an overdenture in the extremely resorbed mandible is a justified treatment option because of the relative simplicity and low morbidity of this treatment strategy. Implant-supported overdenture has several advantages: Cost, retrievability, hygiene access, profile and contour control, increased retention and stability, implant installed in a predicted region(ant. mandible).

  • PDF

Effect of Nitrogen Ion Implantation on Wear Behavior of Biocompatible Ti Implant (질소이온 주입이 생체적합성 티타늄 임플란트의 마모특성에 미치는 영향)

  • Byeon, Eung-Seon;Kim, Dong-Su;Lee, Gu-Hyeon;Jeong, Yong-Su
    • 연구논문집
    • /
    • 통권30호
    • /
    • pp.137-145
    • /
    • 2000
  • Since the concept of osseointegration was introduced, titanium and titanium-based alloy materials have been increasingly used for bone-anchored metal in oralmaxillofacial and orthopedic reconstruction. Successful osseointegration has been attributed to biocompatibility and surface condition of metal implant among other factors. Although titanium and titanium alloys have an excellent over the metal ion release and biocompatibility, considerable controversy has developed over the metal ion and wear debris in vivo and vitro. In this study, nitrogen ion implantation technique was used to improve the corrosion resistance and wear property of titanium materials, ultimately to enhance the tissue reaction to titanium implants As ion implantation energy was increased, projected range of nitrogen ion the Ti substrate was gradually increased. Under condition of constant ion energy. atomic concentration of nitrogen was also increased with ion doses. The friction in Hank's solution was increased with ion doses. The friction coefficient of ion implanted specimens in HanK's solution was increased from 0.39, 0.47 to 0.52, 0.65 respectively under high energy and ion dose conditions. As increasing ion energies and ion dose, amount of wear was reduced.

  • PDF

Effect of different lateral occlusion schemes on peri-implant strain: A laboratory study

  • Lo, Jennifer;Abduo, Jaafar;Palamara, Joseph
    • The Journal of Advanced Prosthodontics
    • /
    • 제9권1호
    • /
    • pp.45-51
    • /
    • 2017
  • PURPOSE. This study aims to investigate the effects of four different lateral occlusion schemes and different excursions on peri-implant strains of a maxillary canine implant. MATERIALS AND METHODS. Four metal crowns with different occlusion schemes were attached to an implant in the maxillary canine region of a resin model. The included schemes were canine-guided (CG) occlusion, group function (GF) occlusion, long centric (LC) occlusion, and implant-protected (IP) occlusion. Each crown was loaded in three sites that correspond to maximal intercuspation (MI), 1 mm excursion, and 2 mm excursion. A load of 140 N was applied on each site and was repeated 10 times. The peri-implant strain was recorded by a rosette strain gauge that was attached on the resin model buccal to the implant. For each loading condition, the maximum shear strain value was calculated. RESULTS. The different schemes and excursive positions had impact on the peri-implant strains. At MI and 1 mm positions, the GF had the least strains, followed by IP, CG, and LC. At 2 mm, the least strains were associated with GF, followed by CG, LC, and IP. However, regardless of the occlusion scheme, as the excursion increases, a linear increase of peri-implant strains was detected. CONCLUSION. The peri-implant strain is susceptible to occlusal factors. The eccentric location appears to be more influential on peri-implant strains than the occlusion scheme. Therefore, adopting an occlusion scheme that can reduce the occurrence of occlusal contacts laterally may be beneficial in reducing peri-implant strains.

Effects of crown retrieval on implants and the surrounding bone: a finite element analysis

  • Ozkir, Serhat Emre;Unal, Server Mutluay;Yurekli, Emel;Guven, Sedat
    • The Journal of Advanced Prosthodontics
    • /
    • 제8권2호
    • /
    • pp.131-136
    • /
    • 2016
  • PURPOSE. The aim of this study was to observe stress concentration in the implant, the surrounding bone, and other components under the pull-out force during the crown removal. MATERIALS AND METHODS. Two 3-dimensional models of implant-supported conventional metal ceramic crowns were digitally constructed. One model was designed as a vertically placed implant ($3.7mm{\times}10mm$) with a straight abutment, and the other model was designed as a 30-degree inclined implant ($3.7mm{\times}10mm$) with an angled abutment. A pull-out force of 40 N was applied to the crown. The stress values were calculated within the dental implant, the abutment, the abutment screw, and the surrounding bone. RESULTS. The highest stress concentration was observed at the coronal portion of the straight implant (9.29 MPa). The stress concentrations at the cortical bone were lower than at the implants, and maximum stress concentration in bone structure was 1.73 MPa. At the abutment screws, the stress concentration levels were similiar (3.09 MPa and 3.44 MPa), but the localizations were different. The stress at the angled abutment was higher than the stress at the straight abutment. CONCLUSION. The pull-out force, applied during a crown removal, did not show an evident effect in bone structure. The higher stress concentrations were mostly observed at the implant and the abutment collar. In addition, the abutment screw, which is the weakest part of an implant system, also showed stress concentrations. Implant angulation affected the stress concentration levels and localizations. CLINICAL IMPLICATIONS. These results will help clinicians understand the mechanical behavior of cement-retained implant-supported crowns during crown retrieval.

Mandibular implant supported overdentures with two different mini-implant systems: A case report (두 종류의 임플란트 시스템을 이용한 하악의 미니-임플란트지지 피개의치 수복 증례)

  • Park, Jin-Hong;Lee, Jeong-Yol;Ryu, Jae-Jun;Shin, Sang-Wan
    • The Journal of Korean Academy of Prosthodontics
    • /
    • 제54권3호
    • /
    • pp.267-272
    • /
    • 2016
  • This case report describes the treatment of two fully edentulous patients with mini-implant overdentures using different implant systems on narrow mandibular alveolar bone ridge. They were complaining about discomfort and pain wearing mandibular conventional complete dentures caused by insufficient retention. Each patient received four miniimplants in the interforaminal area of the mandible using the non-submerged flapless surgical approach. One-body type implant (Slimline, Dentium, Seoul, Korea) was used for a patient and loaded immediately after surgery. Metal housings of O-ring were attached by direct technique. For the other patient, two-piece type implant (LODI, Zest Anchors, Escondido, CA, USA) was used and impressions were made for attachment connection of the Locator's metal housings after 8 weeks of surgery. Within this case report, mandibular miniimplant overdentures using different implant systems showed improvement of patient satisfaction with favorable peri-implant tissue response 6 months after attachment connection. However, long-term follow-up is needed for further evaluation.