• Title/Summary/Keyword: Impedance spectroscopy

Search Result 755, Processing Time 0.028 seconds

Evaluation Anticorrosive Properties of Corrosion Protective Organic Coatings by Electrochemical Impedance Spectroscopy (교류임피던스법에 의한 유기도막의 방식성 평가)

  • 박진환;이근대;전호환
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.41 no.1
    • /
    • pp.88-93
    • /
    • 2004
  • Electrochemical impedance spectroscopy was used to evaluate the anticorrosive properties of resin(alkyd, epoxy, urethane) and pigment(hydroxy apatite(HAp), zinc potassium chromate(ZPC). red lead(RL)). The corrosion behavior of coatings applied on steel has been investigated during exposure to 0.5M-NaCl The anticorrosive performances of resins were found to depend on their chemical nature and decreased in the order of urethane > epoxy > alkyd resin coating. Hydroxy apatite and zinc potassium chromate pigment which have property to passivate the substrate showed relatively high anticorrosive performance.

Redistribution of an Intergranular-Liquid Phase During Sintering of 1 mol%-Al2O3-doped Calcia-Stabilized Zirconia: Estimation by Impedance Spectroscopy

  • Choi, Jung-Hae;Lee, Jong-Heun;Kim, Doh-Yeon
    • Journal of the Korean Ceramic Society
    • /
    • v.39 no.9
    • /
    • pp.818-821
    • /
    • 2002
  • The grain boundary resistivity of a 1-mol%-$Al_2O_3$-dopedd CaO-Stabilized Zirconia(CSZ) specimen was determined by impedance spectroscopy using sub-millimeter-scale electrodes. At the initial stage of sintering, the grain-boundary resistivity of the specimen interior was observed to be higher than that of the surface. However, upon further sintering the boundary resistivity of the specimen interior became lower than that of the surface. The results were explained in terms of a redistribution of the intergranular liquid phase. The liquid phase was predicted to initially coagulate at the interior of the specimen then spread outward during sintering.

Electrochemical Impedance Spectroscopy (EIS) Performance Analysis and Challenges in Fuel Cell Applications

  • Padha, Bhavya;Verma, Sonali;Mahajan, Prerna;Arya, Sandeep
    • Journal of Electrochemical Science and Technology
    • /
    • v.13 no.2
    • /
    • pp.167-176
    • /
    • 2022
  • Electrochemical impedance spectroscopy (EIS) is a unique non-destructive technique employed to analyze various devices in different energy storage applications. It characterizes materials and interfaces for their properties in heterogeneous systems employing equivalent circuits as models. So far, it has been used to analyze the performance of various photovoltaic cells, fuel cells, batteries, and other energy storage devices, through equivalent circuit designing. This review highlights the diverse applications of EIS in fuel cells and specific parameters affecting its performance. A particular emphasis has been laid on the challenges faced by this technique and their possible solutions.

Optical Interferometry as Electrochemical Emission Spectroscopy of Metallic alloys in Aqueous Solutions

  • Habib, K.;AI-Mazeedi, H.
    • Corrosion Science and Technology
    • /
    • v.2 no.6
    • /
    • pp.277-282
    • /
    • 2003
  • Holographic interferometry, an electromagnetic method, was used to study corrosion of carbon steel, aluminum and copper nickel alloys in NaOH, KCI and $H_2SO_4$ solutions respectively. The technique, called electrochemical emission spectroscopy, consisted of in-situ monitoring of changes in the number of fringe evolutions during the corrosion process. It allowed a detailed picture of anodic dissolution rate changes of alloys. The results were compared to common corrosion measurement methods such as linear polarization resistance measurements and electrochemical impedance spectroscopy. A good agreement between both data was found, thus indicating that holographic interferometry can be a very powerful technique for in-situ corrosion monitoring.

Impedance and Thermodynamic Analysis of Bioanode, Abiotic Anode, and Riboflavin-Amended Anode in Microbial Fuel Cells

  • Jung, Sok-Hee;Ahn, Young-Ho;Oh, Sang-Eun;Lee, Jun-Ho;Cho, Kyu-Taek;Kim, Young-Jin;Kim, Myeong-Woon;Shim, Joon-Mok;Kang, Moon-Sung
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.10
    • /
    • pp.3349-3354
    • /
    • 2012
  • Understanding exoelectrogenic reactions of the bioanode is limited due to its complexity and the absence of analytics. Impedance and thermodynamics of bioanode, abiotic anode, and riboflavin-amended anode were evaluated. Activation overpotential of the bioanode was negligible compared with that of the abiotic anode. Impedance spectroscopy shows that the bioanode had much lower charge transfer resistance and higher capacitance than the abiotic anode in low frequency reaction. In high frequency reaction, the impedance parameters, however, were relatively similar between the bioanode and the abiotic anode. At open-circuit impedance spectroscopy, a high frequency arc was not detected in the abiotic anode in Nyquist plot. Addition of riboflavin induced a phase angle shift and created curvature in high-frequency arc of the abiotic anode, and it also drastically changed impedance spectra of the bioanode.

Modified Principal Component Analysis for Real-Time Endpoint Detection of SiO2 Etching Using RF Plasma Impedance Monitoring

  • Jang, Hae-Gyu;Kim, Dae-Gyeong;Chae, Hui-Yeop
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.32-32
    • /
    • 2011
  • Plasma etching is used in microelectronic processing for patterning of micro- and nano-scale devices. Commonly, optical emission spectroscopy (OES) is widely used for real-time endpoint detection for plasma etching. However, if the viewport for optical-emission monitoring becomes blurred by polymer film due to prolonged use of the etching system, optical-emission monitoring becomes impossible. In addition, when the exposed area ratio on the wafer is small, changes in the optical emission are so slight that it is almost impossible to detect the endpoint of etching. For this reason, as a simple method of detecting variations in plasma without contamination of the reaction chamber at low cost, a method of measuring plasma impedance is being examined. The object in this research is to investigate the suitability of using plasma impedance monitoring (PIM) with statistical approach for real-time endpoint detection of $SiO_2$ etching. The endpoint was determined by impedance signal variation from I-V monitor (VI probe). However, the signal variation at the endpoint is too weak to determine endpoint when $SiO_2$ film on Si wafer is etched by fluorocarbon plasma on inductive coupled plasma (ICP) etcher. Therefore, modified principal component analysis (mPCA) is applied to them for increasing sensitivity. For verifying this method, detected endpoint from impedance analysis is compared with optical emission spectroscopy (OES). From impedance data, we tried to analyze physical properties of plasma, and real-time endpoint detection can be achieved.

  • PDF

Impedance Spectroscopy Analysis of the Screen Printed Thick Films (스크린 프린트된 후막의 Impedance Spectroscopy 특성 분석)

  • Ham, Yong-Su;Moon, Sang-Ho;Nam, Song-Min;Lee, Young-Hie;Koh, Jung-Hyuk;Jyoung, Soon-Jong;Kim, Min-Soo;Cho, Kyung-Ho
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.23 no.6
    • /
    • pp.477-480
    • /
    • 2010
  • In this study, we fabricate 3 wt% $Li_2CO_3$ doped $(Ba,Sr)TiO_3$ thick films on the Ag/Pd bottom electrode printed $Al_2O_3$ substrates for the LTCCs (low temperature co-fired ceramics) applications. From the X-ray diffraction analysis, 3 wt% $Li_2CO_3$ doped BST thick films on the Ag/Pd printed $Al_2O_3$ substrates, which sintered at $900^{\circ}C$, showed perovskite structure without any pyro phase. The dielectric properties of 3 wt% $Li_2CO_3$ doped BST thick films are measured from 1 kHz to 1 MHz. To investigate the electrical properties of 3 wt% $Li_2CO_3$ doped BST thick films, we employ the impedance spectroscopy. The complex impedance of 3 wt% $Li_2CO_3$ doped BST thick films are measured from 20 Hz to 1 MHz at the various temperatures.

Modeling and Applications of Electrochemical Impedance Spectroscopy (EIS) for Lithium-ion Batteries

  • Choi, Woosung;Shin, Heon-Cheol;Kim, Ji Man;Choi, Jae-Young;Yoon, Won-Sub
    • Journal of Electrochemical Science and Technology
    • /
    • v.11 no.1
    • /
    • pp.1-13
    • /
    • 2020
  • As research on secondary batteries becomes important, interest in analytical methods to examine the condition of secondary batteries is also increasing. Among these methods, the electrochemical impedance spectroscopy (EIS) method is one of the most attractive diagnostic techniques due to its convenience, quickness, accuracy, and low cost. However, since the obtained spectra are complicated signals representing several impedance elements, it is necessary to understand the whole electrochemical environment for a meaningful analysis. Based on the understanding of the whole system, the circuit elements constituting the cell can be obtained through construction of a physically sound circuit model. Therefore, this mini-review will explain how to construct a physically sound circuit model according to the characteristics of the battery cell system and then introduce the relationship between the obtained resistances of the bulk (Rb), charge transfer reaction (Rct), interface layer (RSEI), diffusion process (W) and battery characteristics, such as the state of charge (SOC), temperature, and state of health (SOH).

Electrochemical Properties on High Temperature Operating Battery by Electrolyte and Salts in Electrodes (고온 작동형 전지의 전해질 및 전극내 첨가염 변화에 따른 전기화학적 특성 연구)

  • Choi, Yu-Song;Ha, Sang-Hyun;Cho, Sung-Baek
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.14 no.4
    • /
    • pp.740-746
    • /
    • 2011
  • Thermally activated batteries have good stability, reliability and long shelf life. Due to these characteristics and operational mechanism, thermal batteries are usually applied to military power sources. Especially, Li/$FeS_2$ thermal batteries, which are used mostly in these days, use LiCl-KCl and LiBr-LiCl-LiF as electrolytes. The electrochemistry of thermal batteries have been researched for long time, however, electrochemical study using impedance spectroscopy was not published so much. Through this research, microscopic electrochemical research was investigated with electrochemical impedance spectroscopy(E.I.S). Electrolyte effects on Li/$FeS_2$ thermal battery was researched changing electrolytes, LiCl-KCl and LiBr-LiCl-LiF. Additionally, the salts, which are added to electrolytes, effects on thermal battery were researched. It is expected that the impedance spectroscopy analysis is applicable to not only thermal battery electrochemical study effectively, but also, thermal battery developments.

Fault Detection of Plasma Etching Processes with OES and Impedance at CCP Etcher

  • Choi, Sang-Hyuk;Jang, Hae-Gyu;Chae, Hee-Yeop
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.257-257
    • /
    • 2012
  • Fault detection was carried out in a etcher of capacitive coupled plasma with OES (Optical Emission Spectroscopy) and impedance by VI probe that are widely used for process control and monitoring at semiconductor industry. The experiment was operated at conventional Ar and Fluorocarbon plasma with variable change such as pressure and addition of N2 and O2 to assume atmospheric leak, RF power and pressure that are highly possible to impact wafer yield during wafer process, in order to observe OES and VI Probe signals. The sensitivity change on OES and Impedance by VI probe was analyzed by statistical method including PCA to determine healthy of process. The main goal of this study is to find feasibility and limitation of OES and Impedances for fault detection by shift of plasma characteristics and to enhance capability of fault detection using PCA.

  • PDF