Browse > Article
http://dx.doi.org/10.33961/jecst.2021.01263

Electrochemical Impedance Spectroscopy (EIS) Performance Analysis and Challenges in Fuel Cell Applications  

Padha, Bhavya (Department of Physics, University of Jammu)
Verma, Sonali (Department of Physics, University of Jammu)
Mahajan, Prerna (Department of Physics, University of Jammu)
Arya, Sandeep (Department of Physics, University of Jammu)
Publication Information
Journal of Electrochemical Science and Technology / v.13, no.2, 2022 , pp. 167-176 More about this Journal
Abstract
Electrochemical impedance spectroscopy (EIS) is a unique non-destructive technique employed to analyze various devices in different energy storage applications. It characterizes materials and interfaces for their properties in heterogeneous systems employing equivalent circuits as models. So far, it has been used to analyze the performance of various photovoltaic cells, fuel cells, batteries, and other energy storage devices, through equivalent circuit designing. This review highlights the diverse applications of EIS in fuel cells and specific parameters affecting its performance. A particular emphasis has been laid on the challenges faced by this technique and their possible solutions.
Keywords
Electrochemical impedance spectroscopy; Energy storage; Fuel cells;
Citations & Related Records
연도 인용수 순위
  • Reference
1 X. Dominguez-Benetton, Biocomplexity and bioelectrochemical influence of gasoline pipelines biofilms in carbon steel deterioration: A transmibion lines and transfer functions approach, PhD, Instituto Mexicano del Petroleo, 2007.
2 A.A. Bojang, H.S. Wu, Catalysts, 2020, 10(7), 782.   DOI
3 J. Larminie, A. Dicks, M.S. McDonald, Operational Fuel Cell Voltages, Fuel cell systems explained, John Wiley & Sons, 2003.
4 D. Kashyap, P.K. Dwivedi, J.K. Pandey, Y.H. Kim, G.M. Kim, A. Sharma, S. Goel, Int. J. Hydr. Energy, 2014, 39(35), 20159-20170.   DOI
5 F. Davis, S.P. Higson, Biosens. Bioelectron., 2007, 22(7), 1224-1235.   DOI
6 E. Martin, B. Tartakovsky, O. Savadogo, Electrochim. Acta, 2011, 58, 58-66.   DOI
7 K. Rabaey, J. Rodriguez, L.L. Blackall, J. Keller, P. Grob, D. Batstone, W. Verstraete, K.H. Nealson, I.S.M.E. J., 2007, 1(1), 9-18.
8 Y. Huang, Z. He, F. Mansfeld, Bioelectrochemistry, 2010, 79(2), 261-264.   DOI
9 A.K. Manohar, O. Bretschger, K.H. Nealson, F. Mansfeld, Bioelectrochemistry, 2008, 72(2), 149-154.   DOI
10 H.P. Djoko, E. Umar, G.S. Dani, Evaluation corrosion behavior on commercial stainleb steel SS 304 in Nano fluids water-Al2O3 system at different pH by Electrochemical Impedance Spectroscopy methods, Journal of Physics: Conference Series, IOP Publishing, 2020, 1428(1), 012025.
11 G. Lepage, F.O. Albernaz, G. Perrier, G. Merlin, Bioresour. Technol., 2012, 124, 199-207.   DOI
12 B. Wei, J. C. Tokash, F. Zhang, Y. Kim, B. E. Logan, Electrochim. Acta, 2013, 89, 45-51.   DOI
13 A.B. Dos Santos, J. Traverse, F.J. Cervantes, J.B. Van Lier, Biotechnol. Bioeng., 2005, 89(1), 42-52 .   DOI
14 R.P. Ramasamy, V. Gadhamshetty, L.J. Nadeau, and G.R. Johnson, Biotechnol. Bioeng., 2009, 104(5), 882-891.   DOI
15 M. Li, Z. Bai, Y. Li, L. Ma, A. Dai, X. Wang, D. Luo, T. Wu, P. Liu, L. Yang, K. Amine, Nat. Commun., 2019, 10, 1890.   DOI
16 F. Qian, M. Baum, Q. Gu, D.E. Morse, Lab Chip, 2009, 9(21), 3076-3081.   DOI
17 R. Cheng, J. Xu, X. Wang, Q. Ma, H. Su, W. Yang, Q. Xu, Front. Chem., 2020, 8, 619.   DOI
18 S. Buteau, J.R. Dahn, J. Electrochem. Soc., 2019, 166, A1611.   DOI
19 S. Wang, J. Zhang, O. Gharbi, V. Vivier, M. Gao, M.E. Orazem, Nat. Rev. Methods, Primers, 2021, 1, 41.   DOI
20 X. Zhao, H. Zhuang, S.C. Yoon, Y. Dong, W. Wang, W. Zhao, J. Food Qual., 2017, 2017, 16.
21 D. Qu, G. Wang, J. Kafle, J. Harris, L. Crain, Z. Jin, D. Zheng, Small Methods, 2018, 2(8), 1700342.   DOI
22 J.P. Diard, B. Le Gorrec, C. Montella, J. Electroanal. Chem., 1994, 377(1-2), 61-73.   DOI
23 B.Y. Chang, S.M. Park, Annu. Rev. Anal. Chem., 2010, 3, 207-229.   DOI
24 K. Darowicki, K. Andrearczyk, J. Power Sources, 2009, 189(2), 988-993.   DOI
25 J.S. Yoo, S.M. Park, Anal. Chem., 2000, 72(9), 2035-2041.   DOI
26 B.Y. Chang, S.Y. Hong, J.S. Yoo, S.M. Park, J. Phys. Chem. B, 2006, 110(39), 19386-19392.   DOI
27 G.A. Ragoisha, A.S. Bondarenko, Electrochim. Acta, 2005, 50(7-8), 1553-1563.   DOI
28 H. Yuan, H. Dai, X. Wei, P. Ming, Chem. Eng. J., 2021, 418, 129358.   DOI
29 C.M.A. Brett, Molecules, 2022, 27(5), 1497.   DOI
30 J. Mitzel, J. Sanchez?Monreal, D. Garcia?Sanchez, P. Gazdzicki, M. Schulze, F. Haubler, J. Hunger, G. Schlumberger, E. Janicka, M. Mielniczek, L. Gawel, Fuel Cells, 2020, 20(4), 403-412.   DOI
31 S. Simon Araya, F. Zhou, S. Lennart Sahlin, S. Thomas, C. Jeppesen, S. Knudsen Kaer, Energies, 2019, 12(1), 152.   DOI
32 K. Meng, H. Zhou, B. Chen, Z. Tu, Energy, 2021, 224, 120168.   DOI
33 R. Ahmed, K. Reifsnider, Study of influence of electrode geometry on impedance spectroscopy, International Conference on Fuel Cell Science, Engineering and Technology, 2010, 44052, 167-175.
34 X. Jin, Y. Li, J. Jiang, S. Xiao, J. Yang, J. Yao, Ionics, 2021, 27(8), 3291-3299.   DOI
35 K. Ariyoshi, M. Tanimoto, Y. Yamada, Electrochim. Acta, 2020, 364, 137292.   DOI
36 J. Hazi, D.M. Elton, W.A. Czerwinski, J. Schiewe, V.A. Vicente-Beckett, A.M. Bond, J. Electroanal. Chem., 1997, 437(1-2), 1-15.   DOI
37 J. Huang, Y. Gao, J. Luo, S. Wang, C. Li, S. Chen, J. Zhang, J. Electrochem. Soc., 2020, 167(16), 160502.   DOI
38 X. Liu, J. Zhao, Y. Cao, W. Li, Y. Sun, J. Lu, Y. Men, J. Hu, RSC Adv., 2015, 5(59), 47506-47510.   DOI
39 O. Gharbi, M.T.T. Tran, B. Tribollet, M. Turmine, V. Vivier, Electrochim. Acta, 2020, 343, 136109.   DOI
40 S.C. Creason, J.W. Hayes, D.E. Smith, J. Electroanal. Chem. Interfacial Electrochem., 1973, 47(1), 9-46.   DOI
41 Diffusion impedance. http://lacey.se/science/eis/diffusion-impedance/ (accebed 27 August, 2021).
42 R. De Levie, A.A. Husovsky, J. Electroanal. Chem. Interfacial Electrochem., 1969, 20(2), 181-193.   DOI
43 Electrochemical Impedance Spectroscopy. https://eng.libretexts.org/Bookshelves/Materials_Science/Supplemental_Modules_(Materials_Science)/Insulators/Electrochemical_Impedance_Spectroscopy (accebed 15 July, 2021).
44 I.C.P. Margarit-Mattos, Electrochim. Acta, 2020, 354, 136725.   DOI
45 J.C. Martins, J.C.d.M. Neto, R.R. Pabos, L.A. Pocrifka, Solid State Ionics, 2020, 346, 115198.   DOI
46 D.E. Smith, Anal. Chem., 1976, 48(2), 221A-240.
47 H. Schichlein, A.C. Muller, M. Voigts, A. Krugel, E. Ivers-Tiffee, J. Appl. Electrochem., 2002, 32(8), 875-882.   DOI
48 R. O'hayre, S.W. Cha, W. Colella, F.B. Prinz, Fuel cell fundamentals, John Wiley & Sons, 2016.
49 P. Liang, X. Huang, M.Z. Fan, X.X. Cao, C. Wang, Appl. Microbiol. Biotechnol., 2007, 77(3), 551-558.   DOI
50 R.J. O'Halloran, L.F.G. Williams, C.P. Lloyd, Corrosion, 1984, 40(7), 344-349.   DOI
51 A. Arutunow, K. Darowicki, Electrochim. Acta, 2008, 53(13), 4387-4395.   DOI
52 A.S. Bondarenko, G.A. Ragoisha, J. Solid State Electrochem., 2005, 9(12), 845-849.   DOI
53 X. Zhang, Y. Jiang, L. Huang, W. Chen, D. Brett, Electrochim. Acta, 2021, 391, 138925.   DOI
54 Z. He, Y. Huang, A.K. Manohar, F. Mansfeld, Bioelectrochemistry, 2008, 74, 78-82.   DOI
55 Electrochemical Impedance Spectroscopy (EIS). https://www.palmsens.com/knowledgebase-article/electrochemical-impedance-spectroscopy/ (accebed 17 August, 2021).
56 F. Ciucci, Curr. Opin. Electrochem., 2019, 13, 132-139.   DOI
57 A.R.C. Bredar, A.L. Chown, A.R. Burton, B.H. Farnum, ACS Appl. Energy Mater., 2020, 3, 66-98.   DOI
58 H.H. Hernandez, A.M.R. Reynoso, J.C.T. Gonzalez, C.O.G. Moran, J.G.M. Hernandez, A.M. Ruiz, R.O. Cruz, T. Gonzalez, Electrochemical Impedance Spectroscopy, 2020, 137-144.
59 G. Instruments, Complex impedance in Corrosion, 2007, 1-30.
60 A. Weib, S. Schindler, S. Galbiati, M.A. Danzer, R. Zeis, Electrochim. Acta, 2017, 230, 391-398.   DOI
61 B. Manikandan, V. Ramar, C. Yap, P. Balaya, J. Power Sources, 2017, 361, 300-309.   DOI
62 R. Caponetto, N. Guarnera, F. Matera, E. Privitera, M.G. Xibilia, Application of Electrochemical Impedance Spectroscopy for prediction of Fuel Cell degradation by LSTM neural networks, 29th mediterr. Conference on Control and Automation (MED), IEEE Publications, 2021.
63 B. Kim, I.S. Chang, R.M. Dinsdale, A.J. Guwy, Electrochim. Acta, 2021, 366, 137388.   DOI
64 The Constant Phase Element (CPE). http://www.consultrsr.net/resources/eis/cpe1.htm (accebed 13 September, 2021).
65 R.R. Gaddam, L. Katzenmeier, X. Lamprecht, A.S. Bandarenka, Phys. Chem. Chem., Phys., 2021, 23, 12926-12944.   DOI
66 L. Carrette, K.A. Friedrich, U. Stimming, Chem. Phys. Chem., 2000, 1(4), 162-193.   DOI
67 Z. He, F. Mansfeld, Energy Environ. Sci., 2009, 2(2), 215-219.   DOI
68 Y. Fan, E. Sharbrough, H. Liu, Environ. Sci. Technol., 2008, 42(21), 8101-8107.   DOI
69 J.W. Wurst, S.A. Garron, A.M. Dob, Apparatus for measuring internal resistance of wet cell storage batteries having non-removable cell caps, U.S. Patent 5,047,722, 1991.
70 S.O. Engblom, M. Wasberg, J. Bobacka, A. Ivaska, Experiences of an on-line Fourier transform faradaic admittance measurement (FT-FAM) system based on digital signal procebors, Contemporary electroanalytical chemistry, Springer, 1990, 21-29.