Browse > Article
http://dx.doi.org/10.33961/jecst.2019.00528

Modeling and Applications of Electrochemical Impedance Spectroscopy (EIS) for Lithium-ion Batteries  

Choi, Woosung (Department of Energy Science, Sungkyunkwan University)
Shin, Heon-Cheol (School of Materials Science and Engineering, Pusan National University)
Kim, Ji Man (Department of Chemistry, Sungkyunkwan University)
Choi, Jae-Young (School of Advanced Materials Science and Engineering, Sungkyunkwan University (SKKU))
Yoon, Won-Sub (Department of Energy Science, Sungkyunkwan University)
Publication Information
Journal of Electrochemical Science and Technology / v.11, no.1, 2020 , pp. 1-13 More about this Journal
Abstract
As research on secondary batteries becomes important, interest in analytical methods to examine the condition of secondary batteries is also increasing. Among these methods, the electrochemical impedance spectroscopy (EIS) method is one of the most attractive diagnostic techniques due to its convenience, quickness, accuracy, and low cost. However, since the obtained spectra are complicated signals representing several impedance elements, it is necessary to understand the whole electrochemical environment for a meaningful analysis. Based on the understanding of the whole system, the circuit elements constituting the cell can be obtained through construction of a physically sound circuit model. Therefore, this mini-review will explain how to construct a physically sound circuit model according to the characteristics of the battery cell system and then introduce the relationship between the obtained resistances of the bulk (Rb), charge transfer reaction (Rct), interface layer (RSEI), diffusion process (W) and battery characteristics, such as the state of charge (SOC), temperature, and state of health (SOH).
Keywords
Electrochemical Impedance Spectroscopy; Lithium-ion Batteries; Equivalent Circuit Model; Diagnosis of Battery Characteristics;
Citations & Related Records
Times Cited By KSCI : 4  (Citation Analysis)
연도 인용수 순위
1 K.-A. Kwon, H.-S. Lim, Y.-K. Sun, K.-D. Suh, J. Phys. Chem. C, 2014, 118, 2897-2907.   DOI
2 S. Xu, C.M. Hessel, H. Ren, R. Yu, Q. Jin, M. Yang, H. Zhao, D. Wang, Energy Environ. Sci., 2014, 7, 632.   DOI
3 D. Chen, H. Quan, J. Liang, L. Guo, Nanoscale, 2013, 5, 9684.   DOI
4 Y. Xiao, X. Wang, W. Wang, D. Zhao, M. Cao, ACS Appl. Mater. Interfaces, 2014, 6, 2051-2058.   DOI
5 S.S. Zhang, K. Xu, T.R. Jow, Electrochim. Acta, 2006, 51(8-9), 1636-1640.   DOI
6 M. Steinhauer, S. Risse, N. Wagner, K.A. Friedrich, Electrochim. Acta., 2017, 228, 652-658.   DOI
7 J.S. Gnanaraj, R.W. Thompson, S.N. Iaconatti, J.F. Dicarlo, K.M. Abraham, Electrochem. Solid-State Lett., 2005, 8(2), A128-A132.   DOI
8 T.S. Sahu, S. Mitra, Sci. Rep., 2015, 5, 12571.   DOI
9 W. Lee, S. Muhammad, T. Kim, H. Kim, E. Lee, M. Jeong, S. Son, J.-H. Ryou, W.-S. Yoon, Adv. Energy Mater, 2018, 8, 1701788.   DOI
10 S.S. Zhang, K. Xu, T.R. Jow, Electrochim. Acta, 2004, 49(7), 1057-1061.   DOI
11 K.M. Shaju, F. Jiao, A. lie Debart, P.G. Bruce, Phys. Chem. Chem. Phys., 2007, 9, 1837-1842.   DOI
12 N. Ogihara, S. Kawauchi, C. Okuda, Y. Itou, Y. Takeuchi, Y. Ukyo, J. Electrochem. Soc., 2012, 159(7), A1034-A1039.   DOI
13 N. Ogihara, Y. Itou, T. Sasaki, Y. Takeuchi, J. Phys. Chem. C, 2015, 119(9), 4612-4619.   DOI
14 C. Ho, I.D. Raistrick, R.A. Huggins, J. Electrochem. Soc., 1980, 127(2), 343-350.   DOI
15 H. Xia, L, Lu, G. Ceder, J. Power Sources, 2006, 159, 1422-1427.   DOI
16 J. Xie, T. Tanaka, N. Imanishi, T. Matsumura, A. Hirano, Y. Takeda, O. Yamamoto, J. Power Sources, 2008, 180(1), 576-581.   DOI
17 J. Xie, N. Imanishi, T. Matsumura, A. Hirano, Y. Takeda, O. Yamamoto, Solid State Ionics, 2008, 179(9-10), 362-370.   DOI
18 S.B. Tang, M.O. Lai, L. Lu, J. Alloys Compd., 2008, 449(1-2), 300-303.   DOI
19 H. Liu, C. Li, H.P. Zhang, L.J. Fu, Y.P. Wu, H.Q. Wu, J. Power Sources, 2006, 159(1), 717-720.   DOI
20 X.H. Rui, N. Ding, J. Liu, C. Li, C.H. Chen, Electrochim. Acta, 2010, 55(7), 2384-2390.   DOI
21 N. Ding, J. Xu, Y.X. Yao, G. Wegner, X. Fang, C.H. Chen, I. Lieberwirth, Solid State Ionics, 2009, 180(1-2), 222-225.   DOI
22 X.H. Rui, N. Ding, J. Liu, C. Li, C.H. Chen, Electrochim. Acta, 2010, 55(7), 2384-2390.   DOI
23 D.C Grahame, Chem. Rev., 1947, 41(3), 441-501.   DOI
24 O. Heaviside, The Electriian., reprinted as Electrical Papers, 1886, 212.
25 E. Warburg, Ann. Phys. Chem., 1899, 3, 493.   DOI
26 A.E. Thiessen, Gen. Radio Exp., 1933, 7, 7-9.
27 V.D.D. MacDonald, Plenum Press. New York-London, 1977, 1, 358-359.
28 D.E. Smith, H.H. Bauer, CRC Crit. Rev. Anal. Chem., 1971, 2(2), 247-343.
29 C. Gabrielli, Tech. Rep. No 004, Solartron, Hampshire, UK., 1984, (3), 1-120.
30 M.J. Ross, K.R. William, Impedance Spectroscopy: Emphasizing Solid Materials and Systems; John Wiley & Sons: John Wiley Sons New York, 1987.
31 Y.H. Kim, Y.S. Kwon, M.Y. Shon, M.J. Moon, J. Electrochem. Sci. Technol., 2018, 9(1), 1-8.   DOI
32 N.N. Hazani, Y. Mohd, S. Ahmad, I. Sheikh, M. Ghazali, Y. Farina, N.N. Dzulkifli, J. Electrochem. Sci. Technol., 2019, 10(1), 29-36.   DOI
33 W. Du, Z. Wang, Z. Zhu, S. Hu, X. Zhu, Y. Shi, H. Pang, X. Qian, J. Mater. Chem. A, 2014, 2, 9613.   DOI
34 H.-B. Choe, H.-S. Lee, M.A. Ismail, M.W. Hussin, Int J Electrochem Sci., 2015, 10, 9775-9789.
35 K. Pandey, S.T.A. Islam, T. Happe, F.A. Armstrong, F. A. Proc. Natl. Acad. Sci. U. S. A, 2017, 114(15), 3843-3848.   DOI
36 A.S. Dezfuli, M.R. Ganjali, H.R. Naderi, P. Norouzi, RSC Adv., 2015, 5, 46050-46058.   DOI
37 E.K. Park, J.W. Yun, J. Electrochem. Sci. Technol., 2016, 7(1), 33-40.   DOI
38 A. Bertei, E. Ruiz-trejo, F. Tariq, V. Yufit, A. Atkinson, N.P. Brandon, Int. J. Hydrogen Energy, 2016, 41, 22381-22393.   DOI
39 X. Zhang, W. Wu, Z. Zhao, B. Tu, D. Ou, D. Cui, M. Cheng, Catal. Sci. Technol., 2016, 6, 4945-4952.   DOI
40 X. Hu, S. Li, H. Peng, J. Power Sources, 2012, 198, 359-367.   DOI
41 T. Momma, M. Matsunaga, D. Mukoyama, T. Osaka, J. Power Sources, 2012, 216, 304-307.   DOI
42 A. Papaderakis, D. Tsiplakides, S. Balomenou, S. Sotiropoulos, J. Electroanal. Chem., 2015, 757, 216-224.   DOI
43 A. Barai, K. Uddin, W.D. Widanage, A. McGordon, P. Jennings, Sci. Rep., 2018, 8(21).
44 U. Krewer, F. Röder, E. Harinath, R.D. Braatz, B. Bedürftig, R. Findeisen, J. Electrochem. Soc., 2018, 165(16), A3656-A3673   DOI
45 S. Rodrigues, N. Munichandraiah, A.K Shukla, J Solid State Electrochem., 1999, 3, 397-405.   DOI
46 S. Kochowski, K. Nitsch, Thin Solid Films, 2002, 415, 133-137.   DOI
47 T. Momma, T. Yokoshima, H. Nara, Y. Gima, T. Osaka, Electrochim. Acta, 2014, 131, 195-201.   DOI
48 S.P. Jing, J.G. Love, S.P.S. Badwal, Key Eng. Mater., 1997, 125-126, 81-132.   DOI
49 J.E.B. Randle, Discuss. Faraday Soc., 1947, 1, 11-19.   DOI
50 M. Gaberscek, J. Moskon, B. Erjavec, R. Dominko, J. Jamnik, Electrochem. Solid-State Lett., 2008, 11(10), A170-A174.   DOI
51 O.S. Mendoza-Hernandez, H. Ishikawa, Y. Nishikawa, Y. Maruyama, Y. Sone, M. Umeda, Electrochim. Acta, 2014, 131, 168-173.   DOI
52 D. Andre, M. Meiler, K. Steiner, H. Walz, T. Soczkaguth, D.U. Sauer, J. Power Sources, 2011, 196(12), 5349-5356.   DOI
53 P. Gao, C. Zhang, G. Wen, J. Power Sources, 2015, 294, 67-74.   DOI
54 B.T. Habte, F. Jiang, Solid State Ionics, 2018, 314, 81-91.   DOI
55 H. Nara, D. Mukoyama, R. Shimizu, T. Momma, T. Osaka, J. Power Sources, 2019, 409, 139-147.   DOI
56 D.W. Abarbanel, K.J. Nelson, J.R. Dahn, J. Electrochem. Soc., 2016, 163(3), A522-A529.   DOI
57 U. Westerhoff, K. Kurbach, F. Lienesch, M. Kurrat, Energy Technol., 2016, 4, 1620-1630.   DOI
58 N.S. Zhai, M.W. Li, W.L. Wang, D.L Zhang, D.G. Xu, J. Phys. Conf. Ser, 2006, 48, 1157.   DOI
59 M.D. Murbach, D.T. Schwartz, J. Electrochem. Soc., 2018, 165(2), A297-A304.   DOI
60 A. Eddahech, O. Briat, J.-M Vinassa, J. Power Sources, 2014, 258, 218-227.   DOI
61 J. Vetter, P. Novak, M.R. Wagner, C. Veit, K.-C. Moller, J.O. Besenhard, M. Winter, M. Wohlfahrt-Mehrens, C. Vogler, A. Hammouche, J. Power Sources, 2005, 147, 269-281.   DOI
62 S.F. Schuster, T. Bach, E. Fleder, J. Muller, M. Brand, G. Sextl, A. Jossen, J. Energy Storage, 2015, 1, 44-53.   DOI
63 S.F. Schuster, M.J. Brand, C. Campestrini, M. Gleissenberger, A. Jossen, J. Power Sources, 2016, 305, 191-199.   DOI