Browse > Article
http://dx.doi.org/10.5012/bkcs.2012.33.10.3349

Impedance and Thermodynamic Analysis of Bioanode, Abiotic Anode, and Riboflavin-Amended Anode in Microbial Fuel Cells  

Jung, Sok-Hee (Sustainability Consulting Group, Samsung SDS)
Ahn, Young-Ho (School of Civil and Environmental Engineering, Yeungnam University)
Oh, Sang-Eun (Department of Biological Environment, Kangwon National University)
Lee, Jun-Ho (Department of Environmental Engineering, Korea University of Transportation)
Cho, Kyu-Taek (Environmental Energy Technologies Division, Lawrence Berkeley National Laboratory)
Kim, Young-Jin (Sustainability Consulting Group, Samsung SDS)
Kim, Myeong-Woon (Department of Environmental Engineering, Daejin University)
Shim, Joon-Mok (Korea Institute of Energy Research)
Kang, Moon-Sung (Department of Environmental Engineering, Sangmyung University)
Publication Information
Abstract
Understanding exoelectrogenic reactions of the bioanode is limited due to its complexity and the absence of analytics. Impedance and thermodynamics of bioanode, abiotic anode, and riboflavin-amended anode were evaluated. Activation overpotential of the bioanode was negligible compared with that of the abiotic anode. Impedance spectroscopy shows that the bioanode had much lower charge transfer resistance and higher capacitance than the abiotic anode in low frequency reaction. In high frequency reaction, the impedance parameters, however, were relatively similar between the bioanode and the abiotic anode. At open-circuit impedance spectroscopy, a high frequency arc was not detected in the abiotic anode in Nyquist plot. Addition of riboflavin induced a phase angle shift and created curvature in high-frequency arc of the abiotic anode, and it also drastically changed impedance spectra of the bioanode.
Keywords
Bioanode; Abiotic anode; Impedance; Anode biofilm; Microbial fuel cell;
Citations & Related Records

Times Cited By Web Of Science : 1  (Related Records In Web of Science)
연도 인용수 순위
  • Reference
1 Logan, B.; Cheng, S.; Watson, V.; Estadt, G. Environ. Sci. Technol. 2007, 41, 3341.   DOI   ScienceOn
2 Jung, S.; Regan, J. M. Appl. Microbiol. Biotechnol. 2007, 77, 393.   DOI
3 Macdonald, J. R. Ann. Biomed. Eng. 1992, 20, 289.   DOI
4 Wagner, N. J. Appl. Electrochem. 2002, 32, 859.   DOI   ScienceOn
5 Larminie, J.; Dicks, A. Fuel Cell System Explained; Wiley: West Sussex, 2002.
6 Bard, A.; Faulkner, L. Electrochemical Methods: Fundamentals and Applications; John Wiley & Sons: 2001.
7 Xing, D.; Cheng, S.; Regan, J. M.; Logan, B. E. Biosens. Bioelectron. 2009, 25, 105.   DOI   ScienceOn
8 Bond, D. R.; Holmes, D. E.; Tender, L. M.; Lovley, D. R. Science 2002, 295, 483.   DOI   ScienceOn
9 Lee, H.-S.; Parameswaran, P.; Kato-Marcus, A.; Torres, C. I.; Rittmann, B. E. Water Res. 2008, 42, 1501.   DOI   ScienceOn
10 Logan, B. E. Nat. Rev. Micro. 2009, 7, 375.   DOI   ScienceOn
11 Mahadevan, R.; Bond, D. R.; Butler, J. E.; Esteve-Nunez, A.; Coppi, M. V.; Palsson, B. O.; Schilling, C. H.; Lovley, D. R. Appl. Environ. Microbiol. 2006, 72, 1558.   DOI   ScienceOn
12 Marsili, E.; Baron, D. B.; Shikhare, I. D.; Coursolle, D.; Gralnick, J. A.; Bond, D. R. Proc. Natl. Acad Sci. U S A 2008, 105, 3968.   DOI   ScienceOn
13 Mench, M. M. Fuel Cell Engines; John Wiley and Sons, Inc.: New York, 2008.
14 Pham, T. H.; Aelterman, P.; Verstraete, W. Trends in Biotechnology 2009, 27, 168.   DOI   ScienceOn
15 Hong, Y.; Call, D. F.; Werner, C. M.; Logan, B. E. Biosens. Bioelectron. 2011, 28, 71.   DOI   ScienceOn
16 Torres, C. I.; Marcus, A. K.; Lee, H. S.; Parameswaran, P.; Krajmalnik-Brown, R.; Rittmann, B. E. FEMS Microbiology Reviews 2010, 34, 3.   DOI   ScienceOn
17 Ha, P. T.; Moon, H.; Kim, B. H.; Ng, H. Y.; Chang, I. S. Biosens. Bioelectron. 2010, 25, 1629.   DOI   ScienceOn
18 Wang, X.; Feng, Y.; Ren, N.; Wang, H.; Lee, H.; Li, N.; Zhao, Q. Electrochimica Acta 2009, 54, 1109.   DOI   ScienceOn
19 Manohar, A. K.; Bretschger, O.; Nealson, K. H.; Mansfeld, F. Electrochimica Acta 2008, 53, 3508.   DOI   ScienceOn
20 Marsili, E.; Rollefson, J. B.; Baron, D. B.; Hozalski, R. M.; Bond, D. R. Appl. Environ. Microbiol. 2008, 74, 7329.   DOI   ScienceOn
21 Ramasamy, R. P.; Ren, Z. Y.; Mench, M. M.; Regan, J. M. Biotechnol. Bioeng. 2008, 101, 101.   DOI   ScienceOn
22 Borole, A. P.; Aaron, D.; Hamilton, C. Y.; Tsouris, C. Environ. Sci. Technol. 2010, 44, 2740.   DOI   ScienceOn
23 von Canstein, H.; Ogawa, J.; Shimizu, S.; Lloyd, J. R. Appl. Environ. Microbiol. 2008, 74, 615.   DOI   ScienceOn
24 Jung, S.; Mench, M. M.; Regan, J. M. Environ. Sci. Technol. 2011, 45, 9069.   DOI   ScienceOn
25 He, Z.; Mansfeld, F. Energy & Environmental Science 2009, 2, 215.   DOI   ScienceOn
26 Ouitrakul, S.; Sriyudthsak, M.; Charojrochkul, S.; Kakizono, T. Biosens. Bioelectron. 2007, 23, 721.   DOI   ScienceOn
27 Cheng, C.-H.; Hung, C.-H.; Lee, K.-S.; Liau, P.-Y.; Liang, C.-M.; Yang, L.-H.; Lin, P.-J.; Lin, C.-Y. Inter. J. Hydrogen Energy 2008, 33, 5242.   DOI   ScienceOn
28 Marcus, A. K.; Torres, C. I.; Rittmann, B. E. Biotechnol. Bioeng. 2007, 98, 1171.   DOI   ScienceOn
29 Jung, S.; Regan, J. M. Appl. Environ. Microbiol. 2011, 77, 564.   DOI   ScienceOn
30 Logan, B. E.; Regan, J. M. Trends in Microbiology 2006, 14, 512.   DOI   ScienceOn