• Title/Summary/Keyword: Impedance Analysis

Search Result 1,701, Processing Time 0.024 seconds

Grounding Characteristics Analysis of the Rod-Type Grounding Electrodes used for Electric Distribution Systems (배전계통에 사용되는 봉형 접지전극의 접지 특성 분석)

  • Kim, Kyung-Chul;Jung, Ji-Won
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.25 no.6
    • /
    • pp.49-56
    • /
    • 2011
  • Grounding system insures a reference potential point for electric devices and also provides a low impedance path for fault currents or transient currents in the earth. The ground impedance as function of frequency is necessary for determining its performance since fault currents could contain a wide range of frequencies. In this paper, the grounding resistance, grounding impedance and transient grounding impedance are measured by using 3-point fall-of-potential method in order to analyse grounding characteristics of the copper and concrete rod grounding electrodes. An equivalent transfer function model of the ground impedance and transient grounding impedance are identified from the measured values by using ARMA method and evaluated by comparing the conventional grounding impedance.

The thermal impedance spectroscopy on Li-ion batteries using heat-pulse response analysis

  • Barsoukov Evgenij;Jang Jee Hwan;Lee Hosull
    • 한국전기화학회:학술대회논문집
    • /
    • 2001.11a
    • /
    • pp.145-161
    • /
    • 2001
  • Novel characterization of thermal properties of a battery has been introduced by defining its frequency-dependent thermal impedance function. Thermal impedance function can be approximated as a thermal impedance spectrum by analyzing experimental temperature transient which is related to the thermal impedance function through Laplace transformation. In order to obtain temperature transient, a process has been devised to generate external heat pulse with heating wire and to measure the response of battery. This process is used to study several commercial Li-ion batteries of cylindrical type. The thermal impedance measurements have been performed using potentionstat/galvanostate controlled digital signal processor, which is more commonly available than flow-meter usually applied for thermal property measurements. Thermal impedance spectra obtained for batteries produced by different manufactures are found to differ considerably. Comparison of spectra at different states of charge indicates independence of thermal impedance on charging state of battery. It is shown that thermal impedance spectrum can be used to obtain simultaneously thermal capacity and thermal conductivity of battery by non-linear complex least-square fit of the spectrum to thermal impedance model. Obtained data is used to simulate a response of the battery to internal heating during discharge. It is found that temperature inside the battery is by one-third larger that on its surface. This observation has to be considered to prevent damage by overheating.

  • PDF

Automatic Switching System for The Impedance Analysis of Multichannel icroelectrode Arrays: Limits and Improvement Scheme (다채널 미세전극칩 임피던스 분석을 위한 자동 스위칭 시스템: 한계점 및 개선 방안)

  • Lee, Seok-Young;Nam, Yoon-Key
    • Journal of Biomedical Engineering Research
    • /
    • v.32 no.3
    • /
    • pp.207-217
    • /
    • 2011
  • Electrode impedances are measured to quantitatively characterize the electrode-electrolyte or cell-electrode interfaces. In the case of high-density microelectrode arrays(MEAs) that have been developed for brainmachine interface applications, the characterization process becomes a repeating and time-consuming task; a system that can perform the measurement and analysis in an automated fashion with accuracy and speed is required. However, due to the large number of channels, parasitic capacitance and off-capacitance components of the switching system become the major factors that decreased the accuracy for the measurement of high impedance microelectrodes. Here we investigated the implementation of automatic impedance measurement system with analyzing the causes of possible measurement-related problems in multichannel switching configuration. Based on our multi-channel measurement circuit model, we suggest solutions to the problems and introduce a novel impedance measurement scheme using electro-mechanical relays. The implemented measurement system could measure |Z| < 700 $k{\Omega}$ of impedance in - 10% errors, which can be widely applicable to high density neural recording MEAs.

On DC-Side Impedance Frequency Characteristics Analysis and DC Voltage Ripple Prediction under Unbalanced Conditions for MMC-HVDC System Based on Maximum Modulation Index

  • Liu, Yiqi;Chen, Qichao;Li, Ningning;Xie, Bing;Wang, Jianze;Ji, Yanchao
    • Journal of Power Electronics
    • /
    • v.16 no.1
    • /
    • pp.319-328
    • /
    • 2016
  • In this study, we first briefly introduce the effect of circulating current control on the modulation signal of a modular multilevel converter (MMC). The maximum modulation index is also theoretically derived. According to the optimal modulation index analysis and the model in the continuous domain, different DC-side output impedance equivalent models of MMC with/without compensating component are derived. The DC-side impedance of MMC inverter station can be regarded as a series xR + yL + zC branch in both cases. The compensating component of the maximum modulation index is also related to the DC equivalent impedance with circulating current control. The frequency characteristic of impedance for MMC, which is observed from its DC side, is analyzed. Finally, this study investigates the prediction of the DC voltage ripple transfer between two-terminal MMC high-voltage direct current systems under unbalanced conditions. The rationality and accuracy of the impedance model are verified through MATLAB/Simulink simulations and experimental results.

Impedance Properties of Phase-Pure Titanium Dioxide Ceramics Sintered at Different Temperatures

  • Cui, Liqi;Niu, Ruifeng;Wang, Weitian
    • Korean Journal of Materials Research
    • /
    • v.32 no.4
    • /
    • pp.181-185
    • /
    • 2022
  • In this study, phase-pure titanium dioxide TiO2 ceramics are sintered using standard high-temperature solid-state reaction technique at different temperatures (1,000, 1,100, 1,200, 1,300, 1,400 ℃). The effect of sintering temperature on the densification and impedance properties of TiO2 ceramics is investigated. The bulk density and average grain size increase with the increase of sintering temperature. Impedance spectroscopy analysis (complex impedance Z* and complex modulus M*), performed in a broad frequency range from 100 Hz to 10 MHz, indicates that the TiO2 ceramics are dielectrically heterogeneous, consisting of grains and grain boundaries. The complex impedance Z* -plane indicates the resistance of grains of the TiO2 ceramics increases with increasing sintering temperature, while that of grain boundaries develops in the opposing direction. The complex modulus M*-plane shows a grain capacitance that seems to be independent of the sintering temperature, while that of the grain boundaries decreases with increasing sintering temperature. These results suggest that different sintering temperatures have effects on the microstructure, leading to changes in the impedance properties of TiO2 ceramics.

Measurement of Channel Impedance Characteristics for Indoor Power Line Communications (옥내 전력선 통신 채널 임피던스 특성 측정)

  • Heo Yoon-Seok;Kim Chul;Hong Bong-Hwa;Lee Dae-Young;Jun Kye-Suk
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.42 no.11
    • /
    • pp.79-86
    • /
    • 2005
  • This paper describe a method for measuring line impedance as a function of frequency for an energized powerline in normal operation. A small sinusoidal signal of a powerline communication utility frequency $30khz\~1Mhz$ band is continuously injected into the line, and a implemented impedance analyzer calculates the indoor powerline channel impedance from the measured magnitude and phase of resulting voltage and current. The impedance measurement is executed over a range of frequencies to produce a wideband impedance versus frequency characteristic. Implemented impedance analyzer can analysis powerline communication environments measuring line impedance due to load caused in indoor. And measured analysis information through the database can use to evaluate performance of modem and to decide test environment standard.

An Analysis Method for the Transient Ground Impedance Using Variable Frequency and Lightning Impulse Current (가변주파수 및 임펄스 전류를 이용한 과도접지임피던스 분석)

  • Eom, Ju-Hong;Cho, Sung-Chul;Lee, Tae-Hyung
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.22 no.6
    • /
    • pp.100-108
    • /
    • 2008
  • The transient ground impedance depending on configuration, size, and material of grounding electrodes as well as the shapes of impulse currents, has a significant affect on the performance of the grounding system. This paper presents experimental results in regard to the analysis method of transient ground impedance using the lightning impulse and variable frequency currents. Also a new estimation method to replace the effective surge impedance for transient ground impedance was proposed. The ground electrodes used in this experiment are virtual ground electrodes including both resistance and inductance components, carbon ground electrode with 1[m] length, copper electrode with 9[m] length and counterpoise with 40[m] length. Ground impedances using the proposed method were measured respectively. Comparing with the ground impedance using variable frequency current the conventional ground impedance($Z_1$) calculated from the peak values of impulse voltage and impulse current is observed more correct method for evaluating the performance of ground electrode than the effective surge impedance.

A Numerical Analysis on the System Impedance in a Fan Cooling System (Fan 냉각장치에서 System 저항에 관한 수치해석)

  • Kim, Dong-Il;Bok, Ki-So;Lee, Seung-Gyu
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.1424-1429
    • /
    • 2004
  • To seek the fan operating point on a cooling system with fans, it is very important to determine the system impedance and it has been usually examined with the fan tester(wind tunnel) based on ASHRAE standard and AMCA standard. This leads to a large investment in time and cost, because it could not be executed until the system is made actually. Therefore it is necessary to predict the system impedance curve through numerical analysis so that we could reduce the measurement effort. This paper presents how the system impedance curve (pressure drop curve) is computed by CFD in substitute for experiment. In reverse order to the experimental principle of the fan tester, pressure difference was adopted first as inlet and outlet boundary conditions of the system and then flow rate was calculated.

  • PDF

Impedance Characteristics of operate fluid about Frictional loss in seamless pipeline (SEAMLESS 관의 마찰손실에 따른 작동유체의 임피던스 특성)

  • 모양우;유영태;최병재
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2001.10a
    • /
    • pp.304-310
    • /
    • 2001
  • Flow pulsation often causes vibration and noise in piping systems and therefore has been a troublesome concern for fluid system engineers. According to frequency increase in this paper under the influence wave form of velocity in springly flow and viscosity are drop coefficient of viscosity become increase so that impedance and resistance. The transient variations of flow rate are measured by a modified impedance tube method which is realized by virtue of the present analytical technique. At pipe line in order to eliminate vibration, confirm happened intermittently impedance characteristics. We make a test and frequency analysis and have to minimize obstructive component at hydraulic circuit.

  • PDF

Singular Point of Voltammetric Impedance Data and its Application in Analyzing Voltammetry Data

  • Chang, Byoung-Yong
    • Journal of Electrochemical Science and Technology
    • /
    • v.9 no.2
    • /
    • pp.149-156
    • /
    • 2018
  • In this technical note, I report the analysis of electrochemical impedance data measured with potential sweeping. Even though the instruments for voltammetric impedance measurements have been developed for decades using different approaches, their applications are limited due to the lack of well-established protocols to easily analyze voltammetry data. To fill this gap, the singular point of the specific potential is considered that is only determined by the standard/formal potential and the transfer coefficient and is independent of the kinetics and experimental parameters (including revertability) of faradaic reactions. Taking the advantage of its inertness, I suggest an approach employing the singular point as a reference to obtain general electrochemical information. As all the concepts and methods are verified with numerical simulations, this technique is expected to be applied for complex reactions involving electrochemical and chemical reaction mechanisms.