Browse > Article
http://dx.doi.org/10.5229/JECST.2018.9.2.149

Singular Point of Voltammetric Impedance Data and its Application in Analyzing Voltammetry Data  

Chang, Byoung-Yong (Department of Chemistry, Pukyong National University)
Publication Information
Journal of Electrochemical Science and Technology / v.9, no.2, 2018 , pp. 149-156 More about this Journal
Abstract
In this technical note, I report the analysis of electrochemical impedance data measured with potential sweeping. Even though the instruments for voltammetric impedance measurements have been developed for decades using different approaches, their applications are limited due to the lack of well-established protocols to easily analyze voltammetry data. To fill this gap, the singular point of the specific potential is considered that is only determined by the standard/formal potential and the transfer coefficient and is independent of the kinetics and experimental parameters (including revertability) of faradaic reactions. Taking the advantage of its inertness, I suggest an approach employing the singular point as a reference to obtain general electrochemical information. As all the concepts and methods are verified with numerical simulations, this technique is expected to be applied for complex reactions involving electrochemical and chemical reaction mechanisms.
Keywords
Electrochemical Impedance; Impedance Analysis; Voltammogram; Transfer Coefficient;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 J. Osteryoung, Accts. Chem. Res., 1993, 26(3), 77-83.   DOI
2 E. P. Parry, and R. A. Osteryoung, Anal. Chem., 1964, 36(7), 1366-1367.   DOI
3 J. B. Flato, Anal. Chem., 1972. 44(11), 75A-87A.   DOI
4 L. Ramaley, and M. S. Krause, Anal. Chem., 1969, 41(11), 1362-1365.   DOI
5 D. E. Smith, and T. G. McCord, Anal. Chem., 1968, 40(3), 474-481.   DOI
6 T. R. Brumleve, J. J. O'Dea, R. A. Osteryoung, and J. Osteryoung, Anal. Chem., 1981, 53(4), 702-706.   DOI
7 A. M. Bond, R. J. O'Halloran, I. Ruzic, and D. E. Smith, Anal. Chem., 1976, 48(6), 872-883.   DOI
8 A. M. Bond, N. W. Duffy, S.-X. Guo, J. Zhang and D. Elton, Anal. Chem., 2005, 77 (9), 186A-195A.
9 B.-Y. Chang and S.-M. Park, Annu. Rev. Anal. Chem., 2010, 3, 207-229.   DOI
10 C. M. Pettit, P. C. Goonetilleke, C. M. Sulyma, and D. Roy, Anal. Chem., 2006, 78(11), 3723-3729.   DOI
11 G. A. Ragoisha, Electroanalysis, 2015, 27(4), 855-863.   DOI
12 B.-Y. Chang and S.-M. Park, J. Phys. Chem. C, 2012, 116 (34), 18270-18277.   DOI
13 John W. Moore, Ralph G. Pearson, Kinetics and Mechanism, 3rd Ed., Wiley, 1981, 48-51.
14 M. Greger, M. Kollar and D. Vollhardt, Physical Review B, 2013, 87(19), 195140.   DOI
15 H.J. Cleaves, Isoelectric Point In Encyclopedia of Astrobiology, Springer Berlin Heidelberg, 2011, 858-859.
16 B. Bjellqvist, G.J. Hughes, C. Pasquali, N. Paquet, F. Ravier, J.-C. Sanchez, S. Frutiger and D. Hochstrasser, Electroanalysis, 1993, 14(1), 1023-1031.
17 M. Son, D. Kim, J. Kang, J.H. Lim, S. H. Lee, H. J. Ko, S. Hong and T. H. Park, Anal. Chem., 2016, 88(23), 11283-11287.   DOI
18 B.-Y. Chang, J. Electrochem. Sci. Technol., 2017, 8(3), 244-249.   DOI
19 A. M. Bond, R. J. O'Halloran, I. Ruzic1 and D. E. Smith, Anal. Chem., 1978, 50(2), 216-223.   DOI
20 B.-Y. Chang, J. Electrochem. Sci. Technol., 2015, 6(4), 146-151.   DOI
21 B.-Y. Chang, J. Electrochem. Sci. Technol., 2016, 7(4), 293-297.   DOI
22 M. Muzikar, W. R. Fawcett, Anal. Chem., 2004, 76(13), 3607-3611.   DOI
23 R. S. Nicholson and I. Shain, Anal. Chem., 1964, 36(4), 706-723.   DOI
24 D. K. Gosser, Cyclic Voltammetry: Simulation and Analysis of Reaction Mechanisms. Wiley-VCH, New York, 1993, 105-114.