• 제목/요약/키워드: Immune activation

검색결과 947건 처리시간 0.03초

Gambogic Acid Disrupts Toll-like Receptor4 Activation by Blocking Lipopolysaccharides Binding to Myeloid Differentiation Factor 2

  • Lee, Jin Young;Lee, Byung Ho;Lee, Joo Young
    • Toxicological Research
    • /
    • 제31권1호
    • /
    • pp.11-16
    • /
    • 2015
  • Our body's immune system has defense mechanisms against pathogens such as viruses and bacteria. Immune responses are primarily initiated by the activation of toll-like receptors (TLRs). In particular, TLR4 is well-characterized and is known to be activated by gram-negative bacteria and tissue damage signals. TLR4 requires myeloid differentiation factor 2 (MD2) as a co-receptor to recognize its ligand, lipopolysaccharides (LPS), which is an extracellular membrane component of gram-negative bacteria. Gambogic acid is a xanthonoid isolated from brownish or orange resin extracted from Garcinia hanburyi. Its primary effect is tumor suppression. Since inflammatory responses are related to the development of cancer, we hypothesized that gambogic acid may regulate TLR4 activation. Our results demonstrated that gambogic acid decreased the expression of pro-inflammatory cytokines ($TNF-{\alpha}$, IL-6, IL-12, and $IL-1{\beta}$) in both mRNA and protein levels in bone marrow-derived primary macrophages after stimulation with LPS. Gambogic acid did not inhibit the activation of Interferon regulatory factor 3 (IRF3) induced by TBK1 overexpression in a luciferase reporter gene assay using IFN-${\beta}$-PRD III-I-luc. An in vitro kinase assay using recombinant TBK1 revealed that gambogic acid did not directly inhibit TBK1 kinase activity, and instead suppressed the binding of LPS to MD2, as determined by an in vitro binding assay and confocal microscopy analysis. Together, our results demonstrate that gambogic acid disrupts LPS interaction with the TLR4/MD2 complex, the novel mechanism by which it suppresses TLR4 activation.

Gamma Irradiation Up-regulates Expression of B Cell Differentiation Molecule CD23 by NF-κB Activation

  • Rho, Hyun-Sook;Park, Soon-Suk;Lee, Choong-Eun
    • BMB Reports
    • /
    • 제37권4호
    • /
    • pp.507-514
    • /
    • 2004
  • Gamma irradiation ($\gamma$-IR) is reported to have diverse effects on immune cell apoptosis, survival and differentiation. In the present study, the immunomodulatory effect of a low dose $\gamma$-IR (5~10 Gy) was investigated, focusing on the role of NF-${\kappa}B$ in the induction of the B cell differentiation molecule, CD23/FceRII. In the human B cell line Ramos, $\gamma$-IR not only induced CD23 expression, but also augmented the IL-4-induced surface CD23 levels. While $\gamma$-IR did not cause STAT6 activation in these cells, it did induce both DNA binding and the transcriptional activity of NF-${\kappa}B$ in the $I{\kappa}B$ degradation-dependent manner. It was subsequently found that different NF-${\kappa}B$ regulating signals modulated the $\gamma$-IR-or IL-4-induced CD23 expression. Inhibitors of NF-${\kappa}B$ activation, such as PDTC and MG132, suppressed the $\gamma$-IR-mediated CD23 expression. In contrast, Ras, which potentiates $\gamma$-IR-induced NF-${\kappa}B$ activity in these cells, further augmented the $\gamma$-IR- or IL-4-induced CD23 levels, The induction of NF-${\kappa}B$ activation and the subsequent up-regulation of CD23 expression by $\gamma$-IR were also observed in monocytic cells. These results suggest that $\gamma$-IR, at specific dosages, can modulate immune cell differentiation through the activation of NF-${\kappa}B$, and this potentially affects the immune inflammatory response that is mediated by cytokines.

Single-Cell Genomics for Investigating Pathogenesis of Inflammatory Diseases

  • Seyoung Jung;Jeong Seok Lee
    • Molecules and Cells
    • /
    • 제46권2호
    • /
    • pp.120-129
    • /
    • 2023
  • Recent technical advances have enabled unbiased transcriptomic and epigenetic analysis of each cell, known as "single-cell analysis". Single-cell analysis has a variety of technical approaches to investigate the state of each cell, including mRNA levels (transcriptome), the immune repertoire (immune repertoire analysis), cell surface proteins (surface proteome analysis), chromatin accessibility (epigenome), and accordance with genome variants (eQTLs; expression quantitative trait loci). As an effective tool for investigating robust immune responses in coronavirus disease 2019 (COVID-19), many researchers performed single-cell analysis to capture the diverse, unbiased immune cell activation and differentiation. Despite challenges elucidating the complicated immune microenvironments of chronic inflammatory diseases using existing experimental methods, it is now possible to capture the simultaneous immune features of different cell types across inflamed tissues using various single-cell tools. In this review, we introduce patient-based and experimental mouse model research utilizing single-cell analyses in the field of chronic inflammatory diseases, as well as multi-organ atlas targeting immune cells.

Signaling Pathways Controlling Microglia Chemotaxis

  • Fan, Yang;Xie, Lirui;Chung, Chang Y.
    • Molecules and Cells
    • /
    • 제40권3호
    • /
    • pp.163-168
    • /
    • 2017
  • Microglia are the primary resident immune cells of the central nervous system (CNS). They are the first line of defense of the brain's innate immune response against infection, injury, and diseases. Microglia respond to extracellular signals and engulf unwanted neuronal debris by phagocytosis, thereby maintaining normal cellular homeostasis in the CNS. Pathological stimuli such as neuronal injury induce transformation and activation of resting microglia with ramified morphology into a motile amoeboid form and activated microglia chemotax toward lesion site. This review outlines the current research on microglial activation and chemotaxis.

모체 면역 활성화 유도 설치류 모델에서 미세아교세포의 역할 조사 (Investigating the Role of Microglia in Maternal Immune Activation in Rodent Models)

  • 김현주
    • 생명과학회지
    • /
    • 제33권5호
    • /
    • pp.429-435
    • /
    • 2023
  • 역학 연구에 따르면 임신 중 산모의 감염, 산모의 스트레스, 환경적 위험 요인이 태아의 인지 장애와 관련된 뇌 발달 이상 위험을 증가시키고 정신분열증 및 자폐 스펙트럼 장애에 대한 감수성을 증가시키는 것으로 나타났다. 여러 동물 모델은 모체 면역 활성화(MIA)가 태아와 자손의 비정상적인 뇌 발달 및 행동 결함을 유발하기에 충분하다는 것이 입증되었다. 모체 면역활성화 동물 모델에는 흔히 바이러스 모방 Poly I:C 또는 박테리아 유래물질 LPS 등을 임신한 어미에 도입시킴으로서 모체 면역이 활성화되며, 친염증성 사이토카인이 증가하고 자손의 뇌에서 미세아교세포 활성이 관찰되었다. 미세아교세포는 중추신경계에서 중재 역할을 하는 뇌 상주 면역 세포이다. 미세아교세포는 식균 작용, 시냅스 형성 및 분지, 혈관 신생과 같은 다양한 기능을 담당하는 것으로 알려져 있다. 여러 연구에서 미세아교세포가 모체면역활성화 자손에서 활성화되어 있고, 다양한 사이토카인과의 상호작용을 통해 자손 행동에 영향을 미침이 보고되었다. 또한 신경세포와 별아교세포와의 상호작용을 통해 뇌회로에서도 중요한 역할을 담당한다. 그러나 미세아교세포가 뇌 발달 및 행동 결함에 필수적인지에 대해서는 논란이 있으며 정확한 메커니즘은 아직 알려지지 않다. 따라서 뇌 발달 장애의 잠재적 진단 및 치료를 위해서는 모체면역활성화 동물 모델에서 미세아교세포 기능 연구의 필요성이 더욱 요구되고 있다.

Biological Safety and B Cells Activation Effects of Stephania delavayi Diels

  • Park, Dae-Hun;Li, Yong-Chun;Shim, Jae-Gal;Xu, Hong-De;Li, Lan;Lee, Min-Jae;Kwon, Myung-Sang
    • Molecular & Cellular Toxicology
    • /
    • 제5권1호
    • /
    • pp.93-98
    • /
    • 2009
  • Stephania delavayi Diels. has been used as an immune activator or an anti-inflammatory drug in China. We examined the immune modulation effect and 7-days repeated-dose toxicity to validate its biological safety and efficiency. Mice were repeatedly administrated with 50 mg/kg S. delavayi Diels. daily by I.P for 7 days. S. delavayi Diels. induced B cell activation but had no effect on other immune cells such as T cell, natural killer (NK) cell, and macrophage ($M{\varphi}$). S. delavayi Diels.-treated group exhibited no statistical significance from the control group in physical conditions; body weight, complete blood count (CBC), serum biochemical indexes etc. There was no difference between the control group and S. delavayi Diels.-treated group in gross findings such as histopathological alteration. In conclusion, S. delavayi Diels. is safe above the dose of immune modulation.

Toll-like Receptor 2 in Autoimmune Inflammation

  • Kathryne E. Marks;Kaylin Cho;Courtney Stickling;Joseph M. Reynolds
    • IMMUNE NETWORK
    • /
    • 제21권3호
    • /
    • pp.18.1-18.13
    • /
    • 2021
  • TLR signaling is critical for broad scale immune recognition of pathogens and/or danger molecules. TLRs are particularly important for the activation and the maturation of cells comprising the innate immune response. In recent years it has become apparent that several different TLRs regulate the function of lymphocytes as well, albeit to a lesser degree compared to innate immunity. TLR2 heterodimerizes with either TLR1 or TLR6 to broadly recognize bacterial lipopeptides as well as several danger-associated molecular patterns. In general, TLR2 signaling promotes immune cell activation leading to tissue inflammation, which is advantageous for combating an infection. Conversely, inappropriate or dysfunctional TLR2 signaling leading to an overactive inflammatory response could be detrimental during sterile inflammation and autoimmune disease. This review will highlight and discuss recent research advances linking TLR2 engagement to autoimmune inflammation.

Molecular Perspectives of SARS-CoV-2: Pathology, Immune Evasion, and Therapeutic Interventions

  • Shah, Masaud;Woo, Hyun Goo
    • Molecules and Cells
    • /
    • 제44권6호
    • /
    • pp.408-421
    • /
    • 2021
  • The outbreak of coronavirus disease 2019 (COVID-19) has not only affected human health but also diverted the focus of research and derailed the world economy over the past year. Recently, vaccination against COVID-19 has begun, but further studies on effective therapeutic agents are still needed. The severity of COVID-19 is attributable to several factors such as the dysfunctional host immune response manifested by uncontrolled viral replication, type I interferon suppression, and release of impaired cytokines by the infected resident and recruited cells. Due to the evolving pathophysiology and direct involvement of the host immune system in COVID-19, the use of immune-modulating drugs is still challenging. For the use of immune-modulating drugs in severe COVID-19, it is important to balance the fight between the aggravated immune system and suppression of immune defense against the virus that causes secondary infection. In addition, the interplaying events that occur during virus-host interactions, such as activation of the host immune system, immune evasion mechanism of the virus, and manifestation of different stages of COVID-19, are disjunctive and require thorough streamlining. This review provides an update on the immunotherapeutic interventions implemented to combat COVID-19 along with the understanding of molecular aspects of the immune evasion of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which may provide opportunities to develop more effective and promising therapeutics.

일차성 면역결핍질환의 최신 지견 (Recent advance in primary immune deficiency disorders)

  • 강형진;신희영;안효섭
    • Clinical and Experimental Pediatrics
    • /
    • 제52권6호
    • /
    • pp.649-654
    • /
    • 2009
  • The immune system is comprised of cells and molecules whose collective and coordinated response to the introduction of foreign substance is referred to as the immune response. Defense against microbes is mediated by the early reaction (innate immunity) and the late response (adaptive immunity). Innate immunity consists of the epithelial barrier, phagocytes, complement and natural killer cells. Adaptive immunity, a more complex defense reaction, consists of activation of later-developed lymphocytes that, when stimulated by exposure to infectious agents, increase in magnitude and defensive capabilities with each successive exposure. In this review we discuss recent advances in important primary immune deficiency disorders of innate immunity (chronic granulomatous disease, leukocyte adhesion deficiency) and adaptive immunity (severe combined immune deficiency, Wiskott- Aldrich syndrome).

Actin Engine in Immunological Synapse

  • Piragyte, Indre;Jun, Chang-Duk
    • IMMUNE NETWORK
    • /
    • 제12권3호
    • /
    • pp.71-83
    • /
    • 2012
  • T cell activation and function require physical contact with antigen presenting cells at a specialized junctional structure known as the immunological synapse. Once formed, the immunological synapse leads to sustained T cell receptor-mediated signalling and stabilized adhesion. High resolution microscopy indeed had a great impact in understanding the function and dynamic structure of immunological synapse. Trends of recent research are now moving towards understanding the mechanical part of immune system, expanding our knowledge in mechanosensitivity, force generation, and biophysics of cell-cell interaction. Actin cytoskeleton plays inevitable role in adaptive immune system, allowing it to bear dynamic and precise characteristics at the same time. The regulation of mechanical engine seems very complicated and overlapping, but it enables cells to be very sensitive to external signals such as surface rigidity. In this review, we focus on actin regulators and how immune cells regulate dynamic actin rearrangement process to drive the formation of immunological synapse.