DOI QR코드

DOI QR Code

Recent advance in primary immune deficiency disorders

일차성 면역결핍질환의 최신 지견

  • Kang, Hyoung-Jin (Department of Pediatrics, Cancer Research Institute, Seoul National University College of Medicine) ;
  • Shin, Hee Young (Department of Pediatrics, Cancer Research Institute, Seoul National University College of Medicine) ;
  • Ahn, Hyo Seop (Department of Pediatrics, Cancer Research Institute, Seoul National University College of Medicine)
  • 강형진 (서울대학교 의과대학 소아과학교실, 암연구소) ;
  • 신희영 (서울대학교 의과대학 소아과학교실, 암연구소) ;
  • 안효섭 (서울대학교 의과대학 소아과학교실, 암연구소)
  • Received : 2009.05.08
  • Accepted : 2009.05.25
  • Published : 2009.06.15

Abstract

The immune system is comprised of cells and molecules whose collective and coordinated response to the introduction of foreign substance is referred to as the immune response. Defense against microbes is mediated by the early reaction (innate immunity) and the late response (adaptive immunity). Innate immunity consists of the epithelial barrier, phagocytes, complement and natural killer cells. Adaptive immunity, a more complex defense reaction, consists of activation of later-developed lymphocytes that, when stimulated by exposure to infectious agents, increase in magnitude and defensive capabilities with each successive exposure. In this review we discuss recent advances in important primary immune deficiency disorders of innate immunity (chronic granulomatous disease, leukocyte adhesion deficiency) and adaptive immunity (severe combined immune deficiency, Wiskott- Aldrich syndrome).

Keywords

Acknowledgement

Supported by : Ministry of Health, Welfare and Family affairs, SNUH

References

  1. Smith RM, Curnutte JT. Molecular basis of chronic granulomatous disease. Blood 1991;77:673-86
  2. Roos D, de Boer M, Kuribayashi F, Meischl C, Weening RS, Segal AW, et al. Mutations in the X-linked and autosomal recessive forms of chronic granulomatous disease. Blood 1996;87:1663-81
  3. Babior BM. The respiratory burst oxidase and the molecular basis of chronic granulomatous disease. Am J Hematol 1991; 37:263-6 https://doi.org/10.1002/ajh.2830370410
  4. Fischer R. Allogeneic hematopietic stem cell transplantation for congenital immune deficiencies. In Atkinson K, Champlin R, Ritz J, Fibbe WE, Ljungman P, Brenner MK, eds. Clinical bone marrow and Blood Stem Cell Transplantation. Cambridge: Cambridge University Press 2004;947-61
  5. Roesler J, Brenner S, Bukovsky AA, Whiting-Theobald N, Dull T, Kelly M, et al. Third-generation, self-inactivating gp91(phox) lentivector corrects the oxidase defect in NOD/ SCID mouse-repopulating peripheral blood-mobilized CD34+ cells from patients with X-linked chronic granulomatous disease. Blood 2002;100:4381-90 https://doi.org/10.1182/blood-2001-12-0165
  6. Malech HL, Maples PB, Whiting-Theobald N, Linton GF, Sekhsaria S, Vowells SJ, et al. Prolonged production of NADPH oxidase-corrected granulocytes after gene therapy of chronic granulomatous disease. Proc Natl Acad Sci U S A 1997;94:12133-8 https://doi.org/10.1073/pnas.94.22.12133
  7. Ott MG, Schmidt M, Schwarzwaelder K, Stein S, Siler U, Koehl U, et al. Correction of X-linked chronic granulomatous disease by gene therapy, augmented by insertional activation of MDS1-EVI1, PRDM16 or SETBP1. Nat Med 2006;12: 401-9 https://doi.org/10.1038/nm1393
  8. Kang EM, Malech HL. Advances in treatment for chronic granulomatous disease. Immunol Res 2009;43:77-84 https://doi.org/10.1007/s12026-008-8051-z
  9. Marodi L, Notarangelo LD. Immunological and genetic bases of new primary immunodeficiencies. Nat Rev Immunol 2007; 7:851-61 https://doi.org/10.1038/nri2195
  10. Alon R, Aker M, Feigelson S, Sokolovsky-Eisenberg M, Staunton DE, Cinamon G, et al. A novel genetic leukocyte adhesion deficiency in subsecond triggering of integrin avidity by endothelial chemokines results in impaired leukocyte arrest on vascular endothelium under shear flow. Blood 2003;101:4437-45 https://doi.org/10.1182/blood-2002-11-3427
  11. Pasvolsky R, Feigelson SW, Kilic SS, Simon AJ, Tal-Lapidot G, Grabovsky V, et al. A LAD-III syndrome is associated with defective expression of the Rap-1 activator CalDAG- GEFI in lymphocytes, neutrophils, and platelets. J Exp Med 2007;204:1571-82 https://doi.org/10.1084/jem.20070058
  12. Bauer TR, Jr., Hai M, Tuschong LM, Burkholder TH, Gu YC, Sokolic RA, et al. Correction of the disease phenotype in canine leukocyte adhesion deficiency using ex vivo hematopoietic stem cell gene therapy. Blood 2006;108:3313-20 https://doi.org/10.1182/blood-2006-03-006908
  13. Qasim W, Gaspar HB, Thrasher AJ. Gene therapy for severe combined immune deficiency. Expert Rev Mol Med 2004;6: 1-15
  14. Buckley RH, Schiff SE, Schiff RI, Markert L, Williams LW, Roberts JL, et al. Hematopoietic stem-cell transplantation for the treatment of severe combined immunodeficiency. N Engl J Med 1999;340:508-16 https://doi.org/10.1056/NEJM199902183400703
  15. Buckley RH, Schiff SE, Schiff RI, Markert L, Williams LW, Roberts JL, et al. Hematopoietic stem-cell transplantation for the treatment of severe combined immunodeficiency. N Engl J Med 1999;340:508-16 https://doi.org/10.1056/NEJM199902183400703
  16. Small TN, Friedrich W, O'Reilly RJ. Hematopoietic cell transplantation for immune deficiency diseases. In Blume KG, Forman SJ, Appelbaum FR, eds. Thomas' Hematopoietic Cell Transplantation. Massachusetts: Blackwell Publishing Ltd. 2004;:1430-42
  17. Rubocki RJ, Parsa JR, Hershfield MS, Sanger WG, Pirruccello SJ, Santisteban I, et al. Full hematopoietic engraftment after allogeneic bone marrow transplantation without cytoreduction in a child with severe combined immunodeficiency. Blood 2001;97:809-11 https://doi.org/10.1182/blood.V97.3.809
  18. Keightley RG, Lawton AR, Cooper MD, Yunis EJ. Successful fetal liver transplantation in a child with severe combined immunodeficiency. Lancet 1975;2:850-3
  19. O'Reilly RJ. et al. Fetal liver transplantation in man and animals. In de Gale RP, eds. Recent Advances in Bone Marrow Transplantation. New York: Alan R. Liss. 1989;780-830
  20. Fischer A, Landais P, Friedrich W, Morgan G, Gerritsen B, Fasth A, et al. European experience of bone-marrow transplantation for severe combined immunodeficiency. Lancet 1990;336:850-4 https://doi.org/10.1016/0140-6736(90)92348-L
  21. Rocha V, Wagner JE, Jr., Sobocinski KA, Klein JP, Zhang MJ, Horowitz MM, et al. Graft-versus-host disease in children who have received a cord-blood or bone marrow transplant from an HLA-identical sibling. Eurocord and International Bone Marrow Transplant Registry Working Committee on Alternative Donor and Stem Cell Sources. N Engl J Med 2000;342:1846-54 https://doi.org/10.1056/NEJM200006223422501
  22. Cavazzana-Calvo M, Hacein-Bey S, de Saint Basile G, Gross F, Yvon E, Nusbaum P, et al. Gene therapy of human severe combined immunodeficiency (SCID)-X1 disease. Science 2000;288:669-72 https://doi.org/10.1126/science.288.5466.669
  23. Aiuti A, Slavin S, Aker M, Ficara F, Deola S, Mortellaro A, et al. Correction of ADA-SCID by stem cell gene therapy combined with nonmyeloablative conditioning. Science 2002; 296:2410-3 https://doi.org/10.1126/science.1070104
  24. Hacein-Bey-Abina S, von Kalle C, Schmidt M, Le Deist F, Wulffraat N, McIntyre E, et al. A serious adverse event after successful gene therapy for X-linked severe combined immunodeficiency. N Engl J Med 2003;348:255-6 https://doi.org/10.1056/NEJM200301163480314
  25. Hacein-Bey-Abina S, Von Kalle C, Schmidt M, McCormack MP, Wulffraat N, Leboulch P, et al. LMO2-associated clonal T cell proliferation in two patients after gene therapy for SCID-X1. Science 2003;302:415-9 https://doi.org/10.1126/science.1088547
  26. Ochs HD, Notarangelo LD. Structure and function of the Wiskott-Aldrich syndrome protein. Curr Opin Hematol 2005; 12:284-91 https://doi.org/10.1097/01.moh.0000168520.98990.19
  27. Puck JM, Candotti F. Lessons from the Wiskott-Aldrich syndrome. N Engl J Med 2006;355:1759-61 https://doi.org/10.1056/NEJMp068209
  28. Filipovich AH, Stone JV, Tomany SC, Ireland M, Kollman C, Pelz CJ, et al. Impact of donor type on outcome of bone marrow transplantation for Wiskott-Aldrich syndrome: collaborative study of the International Bone Marrow Transplant Registry and the National Marrow Donor Program. Blood 2001;97:1598-603 https://doi.org/10.1182/blood.V97.6.1598
  29. Friedrich W, Muller SM. Allogeneic stem cell transplantation for treatment of immunodeficiency. Springer Semin Immunopathol 2004;26:109-18 https://doi.org/10.1007/s00281-004-0158-2
  30. Kang HJ, Shin HY, Ko SH, Park JA, Kim EK, Rhim JW, et al. Unrelated bone marrow transplantation with a reduced toxicity myeloablative conditioning regimen in Wiskott-Aldrich syndrome. J Korean Med Sci 2008;23:146-8 https://doi.org/10.3346/jkms.2008.23.1.146
  31. Gatti RA, Meuwissen HJ, Allen HD, Hong R, Good RA. Immunological reconstitution of sex-linked lymphopenic immunological deficiency. Lancet 1968;2:1366-9
  32. Bach FH, Albertini RJ, Joo P, Anderson JL, Bortin MM. Bone-marrow transplantation in a patient with the Wiskott- Aldrich syndrome. Lancet 1968;2:1364-6

Cited by

  1. Leukocyte Adhesion Deficiency Associated with Neonatal Septic Hip in a Late Preterm Infant vol.25, pp.4, 2018, https://doi.org/10.5385/nm.2018.25.4.191