Browse > Article
http://dx.doi.org/10.14348/molcells.2017.0011

Signaling Pathways Controlling Microglia Chemotaxis  

Fan, Yang (School of Pharmaceutical Science and Technology, Tianjin University)
Xie, Lirui (School of Pharmaceutical Science and Technology, Tianjin University)
Chung, Chang Y. (School of Pharmaceutical Science and Technology, Tianjin University)
Abstract
Microglia are the primary resident immune cells of the central nervous system (CNS). They are the first line of defense of the brain's innate immune response against infection, injury, and diseases. Microglia respond to extracellular signals and engulf unwanted neuronal debris by phagocytosis, thereby maintaining normal cellular homeostasis in the CNS. Pathological stimuli such as neuronal injury induce transformation and activation of resting microglia with ramified morphology into a motile amoeboid form and activated microglia chemotax toward lesion site. This review outlines the current research on microglial activation and chemotaxis.
Keywords
activation; chemotaxis; cell migration; microglia; $P2Y_{12}$ receptor;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Inoue, K. (2002). Microglial activation by purines and pyrimidines. Glia 40, 156-163.   DOI
2 Irino, Y., Nakamura, Y., Inoue, K., Kohsaka, S., and Ohsawa, K. (2008). Akt activation is involved in P2Y12 receptor-mediated chemotaxis of microglia. J. Neurosci. Res. 86, 1511-1519.   DOI
3 Ito, S., Kimura, K., Haneda, M., Ishida, Y., Sawada, M., and Isobe, K. (2007). Induction of matrix metalloproteinases (MMP3, MMP12 and MMP13) expression in the microglia by amyloid-beta stimulation via the PI3K/Akt pathway. Exp. Gerontol. 42, 532-537.   DOI
4 Kettenmann, H., and Verkhratsky, A. (2011). [Neuroglia--living nerve glue]. Fortschr. Neurol. Psychiatr 79, 588-597.   DOI
5 Kim, W.K., Kan, Y., Ganea, D., Hart, R.P., Gozes, I., and Jonakait, G.M. (2000). Vasoactive intestinal peptide and pituitary adenylyl cyclase-activating polypeptide inhibit tumor necrosis factor-alpha production in injured spinal cord and in activated microglia via a cAMP-dependent pathway. J. Neurosci. 20, 3622-3630.   DOI
6 Kreutzberg, G.W. (1996). Microglia: a sensor for pathological events in the CNS. Trends Neurosci. 19, 312-318.   DOI
7 Lee, S., and Chung, C.Y. (2009). Role of VASP phosphorylation for the regulation of microglia chemotaxis via the regulation of focal adhesion formation/maturation. Mol. Cell Neurosci. 42, 382-390.   DOI
8 Lee, S.H., Schneider, C., Higdon, A.N., Darley-Usmar, V.M., and Chung, C.Y. (2011). Role of iPLA(2) in the regulation of Src trafficking and microglia chemotaxis. Traffic 12, 878-889.   DOI
9 Lee, S.H., Hollingsworth, R., Kwon, H.Y., Lee, N., and Chung, C.Y. (2012). beta-arrestin 2-dependent activation of ERK1/2 is required for ADP-induced paxillin phosphorylation at Ser(83) and microglia chemotaxis. Glia 60, 1366-1377.   DOI
10 Lee, S.H., Sud, N., Lee, N., Subramaniyam, S., and Chung, C.Y. (2016). Regulation of Integrin alpha6 Recycling by Calciumindependent Phospholipase A2 (iPLA2) to Promote Microglia Chemotaxis on Laminin. J. Biol. Chem. 291, 23645-23653.   DOI
11 Lu, D.Y., Tang, C.H., Yeh, W.L., Wong, K.L., Lin, C.P., Chen, Y.H., Lai, C.H., Chen, Y.F., Leung, Y.M., and Fu, W.M. (2009). SDF-1alpha upregulates interleukin-6 through CXCR4, PI3K/Akt, ERK, and NFkappaB- dependent pathway in microglia. Eur J. Pharmacol. 613, 146-154.   DOI
12 Mishra, R.S., Carnevale, K.A., and Cathcart, M.K. (2008). iPLA2beta: front and center in human monocyte chemotaxis to MCP-1. J. Exp. Med. 205, 347-359.   DOI
13 Ohsawa, K., Irino, Y., Nakamura, Y., Akazawa, C., Inoue, K., and Kohsaka, S. (2007). Involvement of P2X4 and P2Y12 receptors in ATP-induced microglial chemotaxis. Glia 55, 604-616.   DOI
14 Nasu-Tada, K., Koizumi, S., and Inoue, K. (2005). Involvement of beta1 integrin in microglial chemotaxis and proliferation on fibronectin: different regulations by ADP through PKA. Glia 52, 98-107.   DOI
15 Neary, J.T., Baker, L., Jorgensen, S.L., and Norenberg, M.D. (1994). Extracellular ATP induces stellation and increases glial fibrillary acidic protein content and DNA synthesis in primary astrocyte cultures. Acta Neuropathol. 87, 8-13.   DOI
16 Nimmerjahn, A., Kirchhoff, F., and Helmchen, F. (2005). Resting microglial cells are highly dynamic surveillants of brain parenchyma in vivo. Science 308, 1314-1318.   DOI
17 Parent, C.A., Blacklock, B.J., Froehlich, W.M., Murphy, D.B., and Devreotes, P.N. (1998). G protein signaling events are activated at the leading edge of chemotactic cells. Cell 95, 81-91.   DOI
18 Prinz, M., and Priller, J. (2014). Microglia and brain macrophages in the molecular age: from origin to neuropsychiatric disease. Nat. Rev. Neurosci. 15, 300-312.   DOI
19 Block, M.L. (2014). Neuroinflammation: modulating mighty microglia. Nat. Chem Biol. 10, 988-989.   DOI
20 Barcia, C., Ros, C.M., Annese, V., Gomez, A., Ros-Bernal, F., Aguado- Llera, D., Martinez-Pagan, M.E., de Pablos, V., Fernandez-Villalba, E., and Herrero, M.T. (2012). IFN-gamma signaling, with the synergistic contribution of TNF-alpha, mediates cell specific microglial and astroglial activation in experimental models of Parkinson's disease. Cell. Death Dis. 3, e379.   DOI
21 Streit, W.J., Graeber, M.B., and Kreutzberg, G.W. (1988). Functional plasticity of microglia: a review. Glia 1, 301-307.   DOI
22 Rickert, P., Weiner, O.D., Wang, F., Bourne, H.R., and Servant, G. (2000). Leukocytes navigate by compass: roles of PI3Kgamma and its lipid products. Trends Cell Biol. 10, 466-473.   DOI
23 Sasaki, A.T., and Firtel, R.A. (2006). Regulation of chemotaxis by the orchestrated activation of Ras, PI3K, and TOR. Eur. J. Cell Biol. 85, 873-895.   DOI
24 Sasaki, Y., Hoshi, M., Akazawa, C., Nakamura, Y., Tsuzuki, H., Inoue, K., and Kohsaka, S. (2003). Selective expression of Gi/o-coupled ATP receptor P2Y12 in microglia in rat brain. Glia 44, 242-250.   DOI
25 Carnevale, K.A., and Cathcart, M.K. (2001). Calcium-independent phospholipase A(2) is required for human monocyte chemotaxis to monocyte chemoattractant protein 1. J. Immunol. 167, 3414-3421.   DOI
26 Shankar, H., Garcia, A., Prabhakar, J., Kim, S., and Kunapuli, S.P. (2006). P2Y12 receptor-mediated potentiation of thrombin-induced thromboxane A2 generation in platelets occurs through regulation of Erk1/2 activation. J. Thromb. Haemost. 4, 638-647.   DOI
27 Stence, N., Waite, M., and Dailey, M.E. (2001). Dynamics of microglial activation: a confocal time-lapse analysis in hippocampal slices. Glia 33, 256-266.   DOI
28 Streit, W.J. (2002). Microglia as neuroprotective, immunocompetent cells of the CNS. Glia 40, 133-139.   DOI
29 Stuart, L.M., Bell, S.A., Stewart, C.R., Silver, J.M., Richard, J., Goss, J.L., Tseng, A.A., Zhang, A., El Khoury, J.B., and Moore, K.J. (2007). CD36 signals to the actin cytoskeleton and regulates microglial migration via a p130Cas complex. J. Biol. Chem. 282, 27392-27401.   DOI
30 Suzumura, A. (2013). [Microglia in pathophysiology of neuroimmunological disorders]. Nihon. Rinsho. 71, 801-806.
31 Davalos, D., Grutzendler, J., Yang, G., Kim, J.V., Zuo, Y., Jung, S., Littman, D.R., Dustin, M.L., and Gan, W.B. (2005). ATP mediates rapid microglial response to local brain injury in vivo. Nat. Neurosci. 8, 752-758.   DOI
32 Castellano, E., and Downward, J. (2010). Role of RAS in the regulation of PI 3-kinase. Curr. Top Microbiol. Immunol. 346, 143-169.
33 Chen, L., Iijima, M., Tang, M., Landree, M.A., Huang, Y.E., Xiong, Y., Iglesias, P.A., and Devreotes, P.N. (2007). PLA2 and PI3K/PTEN pathways act in parallel to mediate chemotaxis. Dev. Cell 12, 603-614.   DOI
34 Colton, C., and Wilcock, D.M. (2010). Assessing activation states in microglia. CNS Neurol. Disord. Drug Targets 9, 174-191.   DOI
35 Delgado, M. (2003). Inhibition of interferon (IFN) gamma-induced Jak-STAT1 activation in microglia by vasoactive intestinal peptide: inhibitory effect on CD40, IFN-induced protein-10, and inducible nitric-oxide synthase expression. J. Biol. Chem. 278, 27620-27629.   DOI
36 Dubyak, G.R., and el-Moatassim, C. (1993). Signal transduction via P2-purinergic receptors for extracellular ATP and other nucleotides. Am. J. Physiol. 265, C577-606.   DOI
37 Gordon, S. (2003). Alternative activation of macrophages. Nat. Rev. Immunol. 3, 23-35.   DOI
38 Town, T., Nikolic, V., and Tan, J. (2005). The microglial "activation" continuum: from innate to adaptive responses. J. Neuroinflammation 2, 24.   DOI
39 Swiatkowski, P., Murugan, M., Eyo, U.B., Wang, Y., Rangaraju, S., Oh, S.B., and Wu, L.J. (2016). Activation of microglial P2Y12 receptor is required for outward potassium currents in response to neuronal injury. Neuroscience 318, 22-33.   DOI
40 Tatsumi, E., Yamanaka, H., Kobayashi, K., Yagi, H., Sakagami, M., and Noguchi, K. (2015). RhoA/ROCK pathway mediates p38 MAPK activation and morphological changes downstream of P2Y12/13 receptors in spinal microglia in neuropathic pain. Glia 63, 216-228.   DOI
41 van Haastert, P.J., Keizer-Gunnink, I., and Kortholt, A. (2007). Essential role of PI3-kinase and phospholipase A2 in Dictyostelium discoideum chemotaxis. J. Cell Biol. 177, 809-816.   DOI
42 Wang, F., Herzmark, P., Weiner, O.D., Srinivasan, S., Servant, G., and Bourne, H.R. (2002). Lipid products of PI(3)Ks maintain persistent cell polarity and directed motility in neutrophils. Nat. Cell Biol. 4, 513-518.   DOI
43 Wang, Y.P., Wu, Y., Li, L.Y., Zheng, J., Liu, R.G., Zhou, J.P., Yuan, S.Y., Shang, Y., and Yao, S.L. (2011). Aspirin-triggered lipoxin A4 attenuates LPS-induced pro-inflammatory responses by inhibiting activation of NF-kappaB and MAPKs in BV-2 microglial cells. J. Neuroinflammation 8, 95.   DOI
44 Weiner, O.D., Neilsen, P.O., Prestwich, G.D., Kirschner, M.W., Cantley, L.C., and Bourne, H.R. (2002). A PtdInsP(3)- and Rho GTPase-mediated positive feedback loop regulates neutrophil polarity. Nat. Cell Biol. 4, 509-513.   DOI
45 Zhang, X., Qin, J., Zou, J., Lv, Z., Tan, B., Shi, J., Zhao, Y., Ren, H., Liu, M., Qian, M., et al. (2016). Extracellular ADP facilitates monocyte recruitment in bacterial infection via ERK signaling. Cell Mol. Immunol. [Epub ahead of print]
46 Honda, S., Sasaki, Y., Ohsawa, K., Imai, Y., Nakamura, Y., Inoue, K., and Kohsaka, S. (2001). Extracellular ATP or ADP induce chemotaxis of cultured microglia through Gi/o-coupled P2Y receptors. J. Neurosci. 21, 1975-1982.   DOI
47 Haugh, J.M., Codazzi, F., Teruel, M., and Meyer, T. (2000). Spatial sensing in fibroblasts mediated by 3' phosphoinositides. J. Cell. Biol. 151, 1269-1280.   DOI
48 Haynes, S.E., Hollopeter, G., Yang, G., Kurpius, D., Dailey, M.E., Gan, W.B., and Julius, D. (2006). The P2Y12 receptor regulates microglial activation by extracellular nucleotides. Nat. Neurosci. 9, 1512-1519.   DOI