• Title/Summary/Keyword: Image pixel

Search Result 2,495, Processing Time 0.033 seconds

An Effective Postprocessing Algorithm in Multimedia System (멀티미디어 시스템에서의 효율적인 후처리 알고리듬)

  • Park Kyung-Nam;Kim Seung-Jin;You Hyun-bea;Lee Kuhn-ll
    • Journal of Korea Multimedia Society
    • /
    • v.7 no.11
    • /
    • pp.1521-1530
    • /
    • 2004
  • In this paper, we present effective quantization noise reduction algorithm using signal adaptive filter and linear combination between blocks in multimedia system. In the proposed method, all of the blocks are classified into low frequency blocks, high frequency blocks, and midrange blocks according to DCT coefficients. Ringing artifacts are shown in high frequency blocks. So ringing artifact reduction algorithm is performed in high frequency blocks using a signal adaptive filter. And the blocking artifact reduction is performed by replacing the pixel value of blocky blocks using linear combination between blocky block and remote unblocky block. The simulation results shows better performance in respective of the subjective and objective image quality than the conventional method.

  • PDF

A Study on Aerial Perspective on Painterly Rendering (회화적 렌더링에서의 대기원근법의 표현에 관한 연구)

  • Jang, Jae-Ni;Ryoo, Seung-Taek;Seo, Sang-Hyun;Lee, Ho-Chang;Yoon, Kyung-Hyun
    • Journal of Korea Multimedia Society
    • /
    • v.13 no.10
    • /
    • pp.1474-1486
    • /
    • 2010
  • In this paper, we propose an algorithm which represents the distance depiction technique of real painting that named "Aerial Perspective" in painterly rendering. It is a painting technique that depicts the attenuations of light in the atmosphere, and the scattering effect is changed by the distance, altitude and density of atmospheres. For the reflection of these natures, we use the depth information corresponding to an input image and user-defined parameters, so that user changes the effect level. We calculate the distance and altitude of every pixel with the depth information and parameters about shot information, and control the scattering effects by expression parameters. Additionally, we accentuate the occluding edges detected by the depth information to clarify the sense of distance between fore and back-ground. We apply our algorithm on various landscape scenes, and generate the distance-emphasized results compared to existing works.

A Motion Adaptive Deinterlacing Algorithm Using Improved Motion Detection (향상된 움직임 탐색 기법을 적용한 움직임 적응적 디인터레이싱 알고리듬)

  • Yun, Janghyeok;Jeon, Gwanggil;Jeong, Jechang
    • Journal of Broadcast Engineering
    • /
    • v.18 no.2
    • /
    • pp.167-177
    • /
    • 2013
  • In this paper, a motion adaptive deinterlacing algorithm is proposed. It consists of three parts: (1) modified edge-based line average, (2) pixel-based consequent five-field motion detection, and (3) block-based local characteristic for detecting true motion and calculating the motion intensity by using an improved method which is able to detect the inner part of moving objects precisely as well as to reduce the risk of false detection caused by intrinsic noises in the image. Depending on the detected motion activity level, it combines spatial and temporal methods with weighting factor. Simulations conducted on several video sequences indicate that the performance of the proposed method is superior to the conventional methods in terms of both subjective and objective video quality.

Pedestrian Recognition using Adaboost Algorithm based on Cascade Method by Curvature and HOG (곡률과 HOG에 의한 연속 방법에 기반한 아다부스트 알고리즘을 이용한 보행자 인식)

  • Lee, Yeung-Hak;Ko, Joo-Young;Suk, Jung-Hee;Roh, Tae-Moon;Shim, Jae-Chang
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.16 no.6
    • /
    • pp.654-662
    • /
    • 2010
  • In this paper, we suggest an advanced algorithm, to recognize pedestrian/non-pedestrian using second-stage cascade method, which applies Adaboost algorithm to make a strong classification from weak classifications. First, we extract two feature vectors: (i) Histogram of Oriented Gradient (HOG) which includes gradient information and differential magnitude; (ii) Curvature-HOG which is based on four different curvature features per pixel. And then, a strong classification needs to be obtained from weak classifications for composite recognition method using both HOG and curvature-HOG. In the proposed method, we use one feature vector and one strong classification for the first stage of recognition. For the recognition-failed image, the other feature and strong classification will be used for the second stage of recognition. Based on our experiment, the proposed algorithm shows higher recognition rate compared to the traditional method.

Adaptive Skin Segmentation based on Region Histogram of Color Quantization Map (칼라 양자화 맵의 영역 히스토그램에 기반한 조명 적응적 피부색 영역 분할)

  • Cho, Seong-Sik;Bae, Jung-Tae;Lee, Seong-Whan
    • Journal of KIISE:Software and Applications
    • /
    • v.36 no.1
    • /
    • pp.54-61
    • /
    • 2009
  • This paper proposes a skin segmentation method based on region histograms of the color quantization map. First, we make a quantization map of the image using the JSEG algorithm and detect the skin pixel. For the skin region detection, the similar neighboring regions are set by its similarity of the size and location between the previous frame and the present frame from the each region of the color quantization map. Then we compare the similarity of histogram between the color distributions of each quantized region and the skin color model using the histogram distance. We select the skin region by the threshold value calculated automatically. The skin model is updated by the skin color information from the selected result. The proposed algorithm was compared with previous algorithms on the ECHO database and the continuous images captured under time varying illumination for adaptation test. Our approach shows better performance than previous approaches on skin color segmentation and adaptation to varying illumination.

A Moving Picture Coding Method Based on Region Segmentation Using Genetic Algorithm (유전적 알고리즘을 이용한 동화상의 영역분할 부호화 방법)

  • Jung, Nam-Chae
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.10 no.1
    • /
    • pp.32-39
    • /
    • 2009
  • In this paper, the method of region segmentation using genetic algorithm is proposed for an improvement of efficiency in moving picture coding. A genetic algorithm is the method that searches a large probing space using only a function value for a optimal combination consecutively. By progressing both motion presumption and region segmentation at once, we can assign the motion vector in a image to a small block or a pixel respectively, and transform the capacity of coding and a signal to noise rate into a problem of optimization. That is to say, there is close correlation between region segmentation and motion presumption in motion-compensated prediction coding. This is to optimize the capacity of coding and a S/N ratio. This is to arrange the motion vector in each block of picture according to the state of optimization. Therefore, we examined both the data type of genetic algorithm and the method of data processing to obtain the results of optimal region segmentation in this paper. And we confirmed the validity of a proposed method using the test pictures by means of computer simulation.

  • PDF

Efficient Implementation of Synthetic Aperture Imaging with Virtual Source Element in B-mode Ultrasound System Based on Sparse Array (희박 어레이 기반의 효율적인 양방향 화소단위 집속 기법의 구현)

  • 김강식;송태경
    • Journal of Biomedical Engineering Research
    • /
    • v.23 no.6
    • /
    • pp.419-430
    • /
    • 2002
  • In this paper. we propose an efficient method for implementing hi-directional pixel-based focusing(BiPBF) based on a sparse array imaging technique. The proposed method can improve spatial resolution and frame rate of ultrasound imaging with reduced hardware complexity by synthesizing transmit apertures with a small number of sparsely distributed subapertures. As the distance between adjacent subapertures increases, however. the image resolution tends to decrease due to the elevation of grating lobes. Such grating lobes can be eliminated in conventional synthetic aperture imaging techniques. On the contrary, grating lobes arisen from employing sparse synthetic transmit apertures can not be eliminated, which has been shown analytically in this paper. We also propose the condition and method for suppressing the grating lobes below -40dB, which is generally required in practical imaging. by placing the transmit focal depth at a near depth and properly selecting the subaperture distance in Proportion to receive aperture size. The results of both the Phantom and in vivo experiments show that the proposed method implements two-wav dynamic focusing using a smaller number of subapertures, resulting in reduced system complexity and increased frame rate.

Development of a Data Reduction Algorithm for Optical Wide Field Patrol (OWL) II: Improving Measurement of Lengths of Detected Streaks

  • Park, Sun-Youp;Choi, Jin;Roh, Dong-Goo;Park, Maru;Jo, Jung Hyun;Yim, Hong-Suh;Park, Young-Sik;Bae, Young-Ho;Park, Jang-Hyun;Moon, Hong-Kyu;Choi, Young-Jun;Cho, Sungki;Choi, Eun-Jung
    • Journal of Astronomy and Space Sciences
    • /
    • v.33 no.3
    • /
    • pp.221-227
    • /
    • 2016
  • As described in the previous paper (Park et al. 2013), the detector subsystem of optical wide-field patrol (OWL) provides many observational data points of a single artificial satellite or space debris in the form of small streaks, using a chopper system and a time tagger. The position and the corresponding time data are matched assuming that the length of a streak on the CCD frame is proportional to the time duration of the exposure during which the chopper blades do not obscure the CCD window. In the previous study, however, the length was measured using the diagonal of the rectangle of the image area containing the streak; the results were quite ambiguous and inaccurate, allowing possible matching error of positions and time data. Furthermore, because only one (position, time) data point is created from one streak, the efficiency of the observation decreases. To define the length of a streak correctly, it is important to locate the endpoints of a streak. In this paper, a method using a differential convolution mask pattern is tested. This method can be used to obtain the positions where the pixel values are changed sharply. These endpoints can be regarded as directly detected positional data, and the number of data points is doubled by this result.

Estimation of Fractional Vegetation Cover in Sand Dunes Using Multi-spectral Images from Fixed-wing UAV

  • Choi, Seok Keun;Lee, Soung Ki;Jung, Sung Heuk;Choi, Jae Wan;Choi, Do Yoen;Chun, Sook Jin
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.34 no.4
    • /
    • pp.431-441
    • /
    • 2016
  • Since the use of UAV (Unmanned Aerial Vehicle) is convenient for the acquisition of data on broad or inaccessible regions, it is nowadays used to establish spatial information for various fields, such as the environment, ecosystem, forest, or for military purposes. In this study, the process of estimating FVC (Fractional Vegetation Cover), based on multi-spectral UAV, to overcome the limitations of conventional methods is suggested. Hence, we propose that the FVC map is generated by using multi-spectral imaging. First, two types of result classifications were obtained based on RF (Random Forest) using RGB images and NDVI (Normalized Difference Vegetation Index) with RGB images. Then, the result map was reclassified into vegetation and non-vegetation. Finally, an FVC map-based RF were generated by using pixel calculation and FVC map-based GI (Gutman and Ignatov) model were indirectly made by fixed parameters. The method of adding NDVI shows a relatively higher accuracy compared to that of adding only RGB, and in particular, the GI model shows a lower RMSE (Root Mean Square Error) with 0.182 than RF. In this regard, the availability of the GI model which uses only the values of NDVI is higher than that of RF whose accuracy varies according to the results of classification. Our results showed that the GI mode ensures the quality of the FVC if the NDVI maintained at a uniform level. This can be easily achieved by using a UAV, which can provide vegetation data to improve the estimation of FVC.

Color Assessment for Mosaic Imagery using HSI Model (HSI모델을 이용한 모자이크 영상의 품질 평가)

  • Woo, Hee-Sook;Noh, Myoung-Jong;Park, June-Ku;Cho, Woo-Sug;Kim, Byung-Guk
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.27 no.4
    • /
    • pp.429-435
    • /
    • 2009
  • This paper propose color assessment method using HSI model to evaluate quantitative quality of mosaic images by aerial digital frame camera. Firstly, we convert RGB color into HSI model and we extract six pixel information of S and I corresponding to H from adjacency image by using HSI model. Secondly, a method to measure similarity and contrast is proposed and performed for assesment of observation regarding adjacency images. Through these procedure, we could generate four parameters. We could observe that both of the evaluation results by proposed method and the evaluation results by visual were almost similar. This facts support that our method based on several formula can be an objective method to evaluate a quality of mosaic images itself.