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As described in the previous paper (Park et al. 2013), the detector subsystem of optical wide-field patrol (OWL) provides 
many observational data points of a single artificial satellite or space debris in the form of small streaks, using a chopper 
system and a time tagger. The position and the corresponding time data are matched assuming that the length of a streak 
on the CCD frame is proportional to the time duration of the exposure during which the chopper blades do not obscure 
the CCD window. In the previous study, however, the length was measured using the diagonal of the rectangle of the image 
area containing the streak; the results were quite ambiguous and inaccurate, allowing possible matching error of positions 
and time data. Furthermore, because only one (position, time) data point is created from one streak, the efficiency of the 
observation decreases. To define the length of a streak correctly, it is important to locate the endpoints of a streak. In this 
paper, a method using a differential convolution mask pattern is tested. This method can be used to obtain the positions 
where the pixel values are changed sharply. These endpoints can be regarded as directly detected positional data, and the 
number of data points is doubled by this result.
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1. INTRODUCTION

Optical wide-field patrol (OWL) has a detector subsystem 

consisting of a CCD camera, de-rotator, filter wheel, chopper 

and time tagger (Figs. 1 and 2). This mechanism makes it 

possible to produce multiple data points from observations 

of artificial satellites or space debris which moves faster 

than the sidereal rate of the background celestial objects. In 

the previous paper (Park et al. 2013), the development of a 

data reduction algorithm for this type of data was presented 

in detail. In this paper, the algorithm is reinvestigated and 

improved.

In Section 2, the previous reduction algorithm is summarized 

and a problem in the calculation of the streak length is raised. 

In Section 3, several similar studies are introduced. In Section 

4, a method based on using the differential convolution mask is 

presented and Section 5 summarizes the paper.

2. OWL DATA REDUCTION

2.1 Reduction Procedure

Fig. 3 is a sample of an OWL observation image. The reduction 

procedure in brief is as follows:

1.	�Calculate the world coordinate system (WCS) solution 
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(Calabretta & Greisen 2002; Greisen & Calabretta 2002) 

of an observed image after excluding the streak of a 

target.

2.	�Collect and align the streaks from the image using 

SExtractor (Bertin & Arnouts 1996; Bertin 2006) photometry 

output parameter values.

3.	�Match the positional data of the aligned streaks and the 

time log data using the assumption that the length of 

a streak is directly proportional to the time duration of 

the exposure during which the chopper blades do not 

obscure the CCD window.

4.	�From the matched pairs of the position and time data, 

write the final report for further study of the dynamics 

of the target object.

2.2 Streak Detection and Length Determination Using 

SExtractor

Photometry output using SExtractor includes various 

parameters such as position, magnitude, ellipticity, star/

galaxy classification and coordinate of the rectangular 

region containing the detected object. Streak collection 

is performed using these parameters (ellipticity and star/

galaxy classification). The collected streaks are aligned to a 

Legendre polynomial, usually as a straight line. Because it is 

clear that the length of a streak is proportional to the exposure 

time segment between obscurations by rotating chopper 

blades, defining the length of the streak is essential. In Park et 

al. (2013), this length value is determined using the coordinate 

values of the rectangular region containing the streak (Fig. 4) 

as follows:

The reduction procedure in brief is as follows: 
 
1. Calculate the world coordinate system (WCS) solution (Calabretta & Greisen 2002, Greisen & 

Calabretta 2002) of an observed image after excluding the streak of a target. 
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dynamics of the target object. 
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collection is performed using these parameters (ellipticity and star/galaxy classification). The collected 
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Because it is clear that the length of a streak is proportional to the exposure time segment between 
obscurations by rotating chopper blades, defining the length of the streak is essential. In Park et al. (2013), 
this length value is determined using the coordinate values of the rectangular region containing the streak 
(Fig. 4) as follows: 

 
𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙ℎ =  √(𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 − 𝑋𝑋𝑋𝑋𝑋𝑋𝑁𝑁𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼)2 + (𝑌𝑌𝑌𝑌𝑌𝑌𝑋𝑋𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 − 𝑌𝑌𝑌𝑌𝑌𝑌𝑁𝑁𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼)2  (1) 

 
2.3 Combining Positional Data with Time Log Data 

 
The chopper starts to rotate from a steady (stopped) state and the angular speed accelerates, making the 

length of the streak long at first but decreasing with time. The ratio of the line length (L) and the time 
duration segments (D) recorded using a time tagger is thus assumed to remain unchanged. 

 
In other words, 
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Adjusting the offset of the sequences of L and D, it is possible to find the best offset yielding the 
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𝐿𝐿/𝐷𝐷  value. The streak positions and the time log data are then matched. 
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calculated simply from the diagonal of the rectangular region containing the streak cannot be measured 
directly. The pixel brightness begins to rise from the background when the chopper blade starts to open the 
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the window is completely open. 
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Fig. 1. OWL detector subsystem. The time tagger is not shown in this 
picture.

Fig. 2. Design of detector subsystem. The chopper rotates to separate 
the trail of a moving object into many streaks. When the chopper blade 
hits the photodiode, the open/close status of the CCD window located at 
the opposite side of the sensor is detected and recorded as time log data.

Fig. 3. OWL test observation image. This is already introduced in Park et 
al. (2013).
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The reduction procedure in brief is as follows: 
 
1. Calculate the world coordinate system (WCS) solution (Calabretta & Greisen 2002, Greisen & 

Calabretta 2002) of an observed image after excluding the streak of a target. 
2. Collect and align the streaks from the image using SExtractor (Bertin & Arnouts 1996, Bertin 2006) 

photometry output parameter values. 
3. Match the positional data of the aligned streaks and the time log data using the assumption that the 

length of a streak is directly proportional to the time duration of the exposure during which the 
chopper blades do not obscure the CCD window. 

4. From the matched pairs of the position and time data, write the final report for further study of the 
dynamics of the target object. 
 

2.2 Streak Detection and Length Determination Using SExtractor 
 

Photometry output using SExtractor includes various parameters such as position, magnitude, ellipticity, 
star/galaxy classification and coordinate of the rectangular region containing the detected object. Streak 
collection is performed using these parameters (ellipticity and star/galaxy classification). The collected 
streaks are aligned to a Legendre polynomial, usually as a straight line. 

Because it is clear that the length of a streak is proportional to the exposure time segment between 
obscurations by rotating chopper blades, defining the length of the streak is essential. In Park et al. (2013), 
this length value is determined using the coordinate values of the rectangular region containing the streak 
(Fig. 4) as follows: 
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2.3 Combining Positional Data with Time Log Data 

 
The chopper starts to rotate from a steady (stopped) state and the angular speed accelerates, making the 

length of the streak long at first but decreasing with time. The ratio of the line length (L) and the time 
duration segments (D) recorded using a time tagger is thus assumed to remain unchanged. 

 
In other words, 
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Adjusting the offset of the sequences of L and D, it is possible to find the best offset yielding the 

minimal 𝜎𝜎𝐿𝐿/𝐷𝐷
𝐿𝐿/𝐷𝐷  value. The streak positions and the time log data are then matched. 

 
2.4 Ambiguity of Length Determination 

 
This reduction procedure requires an accurate streak length determination. But the streak length 

calculated simply from the diagonal of the rectangular region containing the streak cannot be measured 
directly. The pixel brightness begins to rise from the background when the chopper blade starts to open the 
CCD window, becomes half of the top value when the CCD window is half open (just when the blade edge 
hits the time tagger photodiode sensor at the opposite side of the CCD window), and reaches the top when 
the window is completely open. 
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value. The streak positions and the time log data are then 

matched.

2.4 Ambiguity of Length Determination

This reduction procedure requires an accurate streak 

length determination. But the streak length calculated simply 

from the diagonal of the rectangular region containing the 

streak cannot be measured directly. The pixel brightness 

begins to rise from the background when the chopper blade 

starts to open the CCD window, becomes half of the top 

value when the CCD window is half open (just when the 

blade edge hits the time tagger photodiode sensor at the 

opposite side of the CCD window), and reaches the top 

when the window is completely open. To measure the exact 

length of a streak, it is important to locate the endpoints of 

the streak accurately. 

3. RELATED STUDIES

In the field of general image processing, just beyond the 

area of observational astronomy, there are various methods 

of feature detection based on mathematical calculations. 

Some of these methods are also adopted and studied for 

astronomical image analyses, including characterization of 

non star-like, elongated objects such as streaks.

3.1 Using “Tepui” Function as PSF

In Abad et al. (2004), an analytic function referred to as 

the “Tepui” function, Eq. (4) is used as a model profile of 

observed visual binary stars. Fig. 5 is a sample streak and 

Fig. 6 shows its “Tepui” fitting result. Abad et al. (2004) noted 

that the parameter “c” in Eq. (4) is related to the length of 

the profile. 
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Montojo et al. (2011) also suggested that streaks of artificial 

satellites fit to this “Tepui” function well along the X-direction, 

while the profile of the Y-direction can be fitted to a Lorentzian 

function: Eq. (5).
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Montojo et al. (2011) also suggested that streaks of artificial satellites fit to this “Tepui” function well 

along the X-direction, while the profile of the Y-direction can be fitted to a Lorentzian function: Eq. (5). 
 

𝑦𝑦 =  1
(1+(1 𝛶𝛶⁄ )2)

    (5) 

 
However, according to Abad et al. (2004), there must be additional fitting parameters to be calculated 

because the real observed streaks have rotation, X and Y shifts, and background gradients. When the 
Lorentzian profile along the Y-direction is used together, the number of parameters then reaches 16 (+ 
Lorentzian parameters), which makes it very difficult to perform this kind of nonlinear fitting. 
 
3.2 Harris Corner Detector 

 
In 1988, Harris & Stephens (1988) suggested an edge detection algorithm based on image gradient. The 

underlying idea of this algorithm is that when a searching window with a box shape sweeps on an image, the 
sum of the pixel values inside the box does not change in a “flat” region in any direction, nor in an “edge” 
region along the edge direction, but changes significantly in all directions in the “corner” region. This idea 
can be implemented and parameterized easily using image pixel gradient. The Gaussian weighted (using 
𝜔𝜔(𝑖𝑖, 𝑗𝑗)) sum of squared differences (SSD) within the inspection window centered on (x, y) position is given 
by: 

𝑆𝑆𝑆𝑆𝑆𝑆(𝑥𝑥, 𝑦𝑦) = ∑ ∑ 𝜔𝜔(𝑖𝑖, 𝑗𝑗)(𝐼𝐼(𝑥𝑥 + 𝑗𝑗, 𝑦𝑦 + 𝑖𝑖) − 𝐼𝐼(𝑖𝑖, 𝑗𝑗))2   
1

𝑗𝑗=−1

1

𝑖𝑖=−1
 (6) 

It can be expressed using the pixel gradients (𝐼𝐼𝑥𝑥 ,𝐼𝐼𝑦𝑦) and Taylor series: 
 

𝐼𝐼(𝑥𝑥 + 𝑗𝑗, 𝑦𝑦 + 𝑖𝑖) = 𝐼𝐼(𝑖𝑖, 𝑗𝑗) + 𝐼𝐼𝑥𝑥(𝑖𝑖, 𝑗𝑗)𝑥𝑥 + 𝐼𝐼𝑦𝑦(𝑖𝑖, 𝑗𝑗)𝑦𝑦     (7) 
 
Hence, the squared sum is: 

� (5)

Fig. 4. Streak length determination using shape parameters of a streak 
from SExtractor.

Fig. 5. A sample streak image for “Tepui” function fitting test.

Fig. 6. Result of “Tepui” function fitting test using the sample streak. The connected red points are the central brightest 
pixels of the sample streak image along the X-direction. Fitting is performed using the Levenberg-Marquardt algorithm (Press 
et al. 2005).
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It can be expressed using the pixel gradients (Ix, Iy) and 

Taylor series:
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Where, 

𝐴𝐴 = [
∑∑𝜔𝜔𝐼𝐼𝑥𝑥

2 ∑∑𝜔𝜔𝐼𝐼𝑥𝑥𝐼𝐼𝑦𝑦
∑∑𝜔𝜔𝐼𝐼𝑥𝑥𝐼𝐼𝑦𝑦 ∑∑𝜔𝜔𝐼𝐼𝑦𝑦

2 ]   (9) 
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To calculate this for just a single image, several fast Fourier 

transform (FFT) and inverse FFTs are needed, resulting in 

excessive calculation time. Additionally, this calculation 

requires a specific study of the noise behavior of OWL 

observation images and parameter optimization, which can 

vary from image to image. Fig. 9 is a 3-dimensional plot of the 

phase congruency calculation result of Fig. 1. Because the 

noise model and parameter optimization are not complete, 

the endpoints of the streaks are not clearly defined.

Fig. 7. Result of applying Harris corner detector. The input image (left). 
The calculated response map (middle). An appropriate threshold is 
applied manually on the map (right). 

Fig. 8. An example of applying the phase congruency method. The 
input image (left). The edges and the corners of the input images 
extracted (right).
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4. REVISED REDUCTION ALGORITHM

4.1 “Differential” Convolution Mask

Prewitt (1970) presented a method of edge detection 

using a 3×3 convolution mask (Fig. 10(a)). The result of 

image convolution using this mask pattern as a convolution 

kernel is the horizontal image gradient of an input image 

because it calculates the difference of both sides of the 

central pixel. We hereafter refer to this mask pattern as the 

“differential” mask. Originally, Prewitt (1970) suggested 

using this mask in horizontal and vertical directions and 

calculating the Pythagorean root mean square to extract the 

feature pattern of objects in an image. But our purpose is 

not exactly the same and we can measure the position angle 

of the aligned streaks; the method (described in Section 4.2) 

is somewhat different. An example of the result is illustrated 

in Fig. 11. The input image (Fig. 11(a)) has streaks tilted 

12.4˚ clockwise on it. The convolution mask (Figs. 10(a) and 

10(b))  hence should also be rotated (Figs. 10(c) and 10(d)). 

After convolving using this rotated, bicubic-interpolated 

kernel, the rising and the declining positions of the streaks 

appear (Fig. 12(b)). Taking the absolute values of the 

convolved images shows us the endpoints of the streaks (Fig. 

12(c)), where the absolute values of the image gradients are 

the most significant when the edges of the chopper blades 

obscure half of the CCD window as explained in Section 2.4.

4.2 Measuring the Lengths of Streaks and Making the 

Final Reduction Result

The procedure of measuring the lengths of streaks is as 

follows:

1.�	As outlined in the algorithm in Park et al. (2013), obtain 

the positions of the streak centers.

2.�	Convolve the image and take the absolute value pattern 

as explained in Section 4.1.

3.�	Find the positions of the pixels of the peak values near 

the endpoints of each streak. This can be done using 

the “XPEAK_IMAGE” and “YPEAK_IMAGE” output 

parameters provided by SExtractor.

4.�	Because the peak positions from SExtractor are integer 

values, refine them as the centroid positions, which are 

the pixel intensity weighted average coordinate values.

5.�	Calculate the displacements between the centroid 

positions of the endpoints of each streak. These are the 

true lengths of the streaks.

6.�	Matching the streaks and the time log data using these 

newly measured streak length values.

Because the newly identified endpoints are the direct 

observed points which the raw time log records correspond 

to, the number of the resultant data points is two times that 

of the case of Park et al. (2013), which considers only the 

center positions of the streaks.

Fig. 9. 3-dimensional plot of the result of applying phase congruency. 
The input image is the same as Fig. 7.

Fig. 11. The sample image of streaks (a), convolved image using the rotated kernel (b), the absolute values 
of the convolved image (c).

(a) (b) (c)

(a) (b) (c) (d)
Fig. 10. The Prewitt mask (a), its visualization (b), rotated 12.4˚ clockwise and bicubic interpolated (c) and 
its visualization (d).
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4.3 Comparison with the Old Method via Simulation

To compare the behaviors of the old and the new methods 

of streak length measurement, a brief simulation is performed 

using artificially created streak images. The streak model 

function is a “Tepui” function along the major axis and a 

Lorentzian profile along the minor axis as explained in Section 

2.1, similar to the model in Montojo et al. (2011). The input 

parameters of the simulation are summarized in Table 1 and 

Fig. 12 shows images created using these parameters. The 

lengths of these streaks are calculated using the diagonal 

method of Park et al. (2013) and the convolution method. 

The results are shown in Fig. 13 for each Υ value. In Fig. 

13, the streaks length values from the diagonal method 

change with the Υ values because as the widths of the 

streaks change, the shapes and sizes of the rectangular 

boxes containing streaks change, hence the lengths of the 

diagonals change. But the displacements of the endpoints 

obtained via convolution are not affected.

Fig. 13. Results of length measurements. Dashed lines are the values of the diagonal method of Park et al. (2013) and solid lines are those of the 
convolution method. With varying Υ values of 1.0 (a) (top left set), 2.0 (b) (top right), 3.0 (c) (bottom left) and 4.0 (d) (bottom right), the results from the 
convolution method remain at the length of 16, which is two times the “c” parameter in Eq. (4), while the results from the diagonal method change.

Fig. 12. The artificial streak images. 4 sets of streaks, 16 streaks for each set are created with rotation 
angles of 0°, 6°, 12°, 18°, 24°, 30°, 36°, 42°, 48°, 54°, 60°, 66°, 72°, 78°, 84° and 90° clockwise from the horizontal 
axis and Υ values of 1.0 (a) (top left set), 2.0 (b) (top right), 3.0 (c) (bottom left), and 4.0 (d) (bottom right).

(a)

(c)

(b)

(d)

Table 1. Simulation parameters

Input parameters Values

A in Eq. (4) 132.61

b1 -0.80626

b2 -0.6257

C 8.0

Υ in Eq. (5) 1.0, 2.0, 3.0, 4.0

Rotation angle (°) 0, 6, 12, 18, 24, 30, 36, 42, 48, 54, 60, 66, 72, 78, 84, 90
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5. SUMMARY

OWL is an automated observation and data acquisition 

system for fast moving objects such as artificial satellites and 

space debris near the Earth. It has a chopper system and a 

time tagger that can generate a large number of data points of 

the moving targets in a single observation. Park et al. (2013) 

reported a basic data reduction algorithm for this purpose 

based on the characteristic that the length of observed streak 

of a moving target trajectory cut by the chopper and the 

time durations of the exposures are proportional to each 

other. However, although an accurate measuring method 

of the lengths of the streaks is essential for this algorithm, 

the method used in the previous study was not accurate 

enough. In this paper, several related studies about feature 

detection in the field of image processing are examined 

and applied to the image data from OWL observation. The 

results demonstrate that the method of convolution using the 

“differential” mask pattern presented by Prewitt (1970) is a 

good solution. Using this, more exact results of streak length 

measurements are enabled, and the number of data points 

is increased up to two times enhancing the efficiency of the 

observation significantly.
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