• Title/Summary/Keyword: Image based localization

Search Result 258, Processing Time 0.031 seconds

Convolutional Neural Network-Based Automatic Segmentation of Substantia Nigra on Nigrosome and Neuromelanin Sensitive MR Images

  • Kang, Junghwa;Kim, Hyeonha;Kim, Eunjin;Kim, Eunbi;Lee, Hyebin;Shin, Na-young;Nam, Yoonho
    • Investigative Magnetic Resonance Imaging
    • /
    • v.25 no.3
    • /
    • pp.156-163
    • /
    • 2021
  • Recently, neuromelanin and nigrosome imaging techniques have been developed to evaluate the substantia nigra in Parkinson's disease. Previous studies have shown potential benefits of quantitative analysis of neuromelanin and nigrosome images in the substantia nigra, although visual assessments have been performed to evaluate structures in most studies. In this study, we investigate the potential of using deep learning based automatic region segmentation techniques for quantitative analysis of the substantia nigra. The deep convolutional neural network was trained to automatically segment substantia nigra regions on 3D nigrosome and neuromelanin sensitive MR images obtained from 30 subjects. With a 5-fold cross-validation, the mean calculated dice similarity coefficient between manual and deep learning was 0.70 ± 0.11. Although calculated dice similarity coefficients were relatively low due to empirically drawn margins, selected slices were overlapped for more than two slices of all subjects. Our results demonstrate that deep convolutional neural network-based method could provide reliable localization of substantia nigra regions on neuromelanin and nigrosome sensitive MR images.

Position Estimation of Autonomous Mobile Robot Using Geometric Information of a Moving Object (이동물체의 기하학적 위치정보를 이용한 자율이동로봇의 위치추정)

  • Jin, Tae-Seok;Lee, Jang-Myung
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.14 no.4
    • /
    • pp.438-444
    • /
    • 2004
  • The intelligent robots that will be needed in the near future are human-friendly robots that are able to coexist with humans and support humans effectively. To realize this, robots need to recognize their position and posture in known environment as well as unknown environment. Moreover, it is necessary for their localization to occur naturally. It is desirable for a robot to estimate of his position by solving uncertainty for mobile robot navigation, as one of the best important problems. In this paper, we describe a method for the localization of a mobile robot using image information of a moving object. This method combines the observed position from dead-reckoning sensors and the estimated position from the images captured by a fixed camera to localize a mobile robot. Using the a priori known path of a moving object in the world coordinates and a perspective camera model, we derive the geometric constraint equations which represent the relation between image frame coordinates for a moving object and the estimated robot's position. Since the equations are based or the estimated position, the measurement error may exist all the time. The proposed method utilizes the error between the observed and estimated image coordinates to localize the mobile robot. The Kalman filter scheme is applied for this method. its performance is verified by the computer simulation and the experiment.

2D Human Pose Estimation based on Object Detection using RGB-D information

  • Park, Seohee;Ji, Myunggeun;Chun, Junchul
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.2
    • /
    • pp.800-816
    • /
    • 2018
  • In recent years, video surveillance research has been able to recognize various behaviors of pedestrians and analyze the overall situation of objects by combining image analysis technology and deep learning method. Human Activity Recognition (HAR), which is important issue in video surveillance research, is a field to detect abnormal behavior of pedestrians in CCTV environment. In order to recognize human behavior, it is necessary to detect the human in the image and to estimate the pose from the detected human. In this paper, we propose a novel approach for 2D Human Pose Estimation based on object detection using RGB-D information. By adding depth information to the RGB information that has some limitation in detecting object due to lack of topological information, we can improve the detecting accuracy. Subsequently, the rescaled region of the detected object is applied to ConVol.utional Pose Machines (CPM) which is a sequential prediction structure based on ConVol.utional Neural Network. We utilize CPM to generate belief maps to predict the positions of keypoint representing human body parts and to estimate human pose by detecting 14 key body points. From the experimental results, we can prove that the proposed method detects target objects robustly in occlusion. It is also possible to perform 2D human pose estimation by providing an accurately detected region as an input of the CPM. As for the future work, we will estimate the 3D human pose by mapping the 2D coordinate information on the body part onto the 3D space. Consequently, we can provide useful human behavior information in the research of HAR.

Development of Photogrammetric Rectification Method Applying Bayesian Approach for High Quality 3D Contents Production (고품질의 3D 콘텐츠 제작을 위한 베이지안 접근방식의 사진측량기반 편위수정기법 개발)

  • Kim, Jae-In;Kim, Taejung
    • Journal of Broadcast Engineering
    • /
    • v.18 no.1
    • /
    • pp.31-42
    • /
    • 2013
  • This paper proposes a photogrammetric rectification method based on Bayesian approach as a method that eliminates vertical parallax between stereo images to minimize visual fatigue of 3D contents. The image rectification consists of two phases; geometry estimation and epipolar transformation. For geometry estimation, coplanarity-based relative orientation algorithm was used in this paper. To ensure robustness for mismatch and localization error occurred by automation of tie point extraction, Bayesian approach was applied by introducing several prior constraints. As epipolar transformation perspective transformation was used based on condition of collinearity to minimize distortion of result images and modification for input images. Other algorithms were compared to evaluate performance. For geometry estimation, traditional relative orientation algorithm, 8-points algorithm and stereo calibration algorithm were employed. For epipolar transformation, Hartley algorithm and Bouguet algorithm were employed. The evaluation results showed that the proposed algorithm produced results with high accuracy, robustness about error sources and minimum image modification.

Edge Detection Using Informations of Edge Structures (에지의 구조적정보을 이용한 에지추출)

  • Kim, Su-Gyeom;Jang, Yu-Jeong
    • The Transactions of the Korea Information Processing Society
    • /
    • v.3 no.5
    • /
    • pp.1337-1345
    • /
    • 1996
  • Edge detection is the first step and very important step in image nalyisi. In this paper, proposed edge detection algorithm based on informations of edge structures and it is different from other classical edge detection operators such asgradient and surface fitting algorithm. The firs, we defined characteristics of edge structures such as continuity, thinness, localization, length. The second, we defined valid edge structures and ideal edge pixel positions in $3\times3$ window based on edge characteristics of edge structures. And we proposed twelve windows for enhance dissimilarity regions based on valid edge structures and ideal edge pixel positions. In specially, proposed algorithm was shown better performance of edge detection than other operators such as gradient operator and the LoG(Laplacian of gradient) operator of zero crossings in noisy test image with $\sigma=30$.

  • PDF

Efficient Visual Place Recognition by Adaptive CNN Landmark Matching

  • Chen, Yutian;Gan, Wenyan;Zhu, Yi;Tian, Hui;Wang, Cong;Ma, Wenfeng;Li, Yunbo;Wang, Dong;He, Jixian
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.11
    • /
    • pp.4084-4104
    • /
    • 2021
  • Visual place recognition (VPR) is a fundamental yet challenging task of mobile robot navigation and localization. The existing VPR methods are usually based on some pairwise similarity of image descriptors, so they are sensitive to visual appearance change and also computationally expensive. This paper proposes a simple yet effective four-step method that achieves adaptive convolutional neural network (CNN) landmark matching for VPR. First, based on the features extracted from existing CNN models, the regions with higher significance scores are selected as landmarks. Then, according to the coordinate positions of potential landmarks, landmark matching is improved by removing mismatched landmark pairs. Finally, considering the significance scores obtained in the first step, robust image retrieval is performed based on adaptive landmark matching, and it gives more weight to the landmark matching pairs with higher significance scores. To verify the efficiency and robustness of the proposed method, evaluations are conducted on standard benchmark datasets. The experimental results indicate that the proposed method reduces the feature representation space of place images by more than 75% with negligible loss in recognition precision. Also, it achieves a fast matching speed in similarity calculation, satisfying the real-time requirement.

Improving a Sound Localization Using 1/3-octave Band Pass Filter (1/3-옥타브 대역통과필터를 이용한 음상정위기법 성능 향상)

  • Hwang, Shin;Yang, Jin-Woo;Cheung, Wan-Sup;Kim, Soon-Hyob
    • The Journal of the Acoustical Society of Korea
    • /
    • v.20 no.3
    • /
    • pp.98-103
    • /
    • 2001
  • The binaural auditory system of human has the capability of differentiating the direction and distance of sound sources. This feature is well characterised in terms of the inter-aural intensity difference (IID), the inter-aural time difference (ITD) and/or the spectral shape difference (SSD) arising from the acoustic transfer of a sound source to the outer ears. This paper proposes an effective way of extracting the three sound perception factors (IID, ITD, SSD) from the head-related transfer functions (HRTF's) that depends on the direction and distance of the acoustic source from the listener. It includes the estimation method of the equivalent ITD and 1/3-octave band-based IID factors and their usage to locate a sound source in space. Subjective and objective tests were carried out to examine the effectiveness of the proposed methodology and its applicability to real sound systems. Those experimental results are illustrated in this paper.

  • PDF

Interactive Mobile Augmented Reality System using Muscle Sensor and Image-based Localization System through Client-Server Communication (서버/클라이언트 통신을 통한 영상 기반 위치 인식 및 근육 센서를 이용한 상호작용 모바일 증강현실 시스템)

  • Lee, Sungjin;Baik, Davin;Choi, Sangyeon;Hwang, Sung Soo
    • Journal of the HCI Society of Korea
    • /
    • v.13 no.4
    • /
    • pp.15-23
    • /
    • 2018
  • A lot of games are supposed to play through controller operations, such as mouse and keyboard rather than user's physical movement. These games have limitation that causes the user lack of movement. Therefore, this study will solve the problems that these traditional game systems have through the development of a motion-producing system, and provide users more realistic system. It recognizes the user's position in a given space and provides a mobile augmented reality system that interacts with virtual game characters. It uses augmented reality technology to make users feel as if virtual characters exist in real space and it designs a mobile game system that uses armband controllers that interact with virtual characters.

  • PDF

Deep Learning-based Gaze Direction Vector Estimation Network Integrated with Eye Landmark Localization (딥 러닝 기반의 눈 랜드마크 위치 검출이 통합된 시선 방향 벡터 추정 네트워크)

  • Joo, Heeyoung;Ko, Min-Soo;Song, Hyok
    • Journal of Broadcast Engineering
    • /
    • v.26 no.6
    • /
    • pp.748-757
    • /
    • 2021
  • In this paper, we propose a gaze estimation network in which eye landmark position detection and gaze direction vector estimation are integrated into one deep learning network. The proposed network uses the Stacked Hourglass Network as a backbone structure and is largely composed of three parts: a landmark detector, a feature map extractor, and a gaze direction estimator. The landmark detector estimates the coordinates of 50 eye landmarks, and the feature map extractor generates a feature map of the eye image for estimating the gaze direction. And the gaze direction estimator estimates the final gaze direction vector by combining each output result. The proposed network was trained using virtual synthetic eye images and landmark coordinate data generated through the UnityEyes dataset, and the MPIIGaze dataset consisting of real human eye images was used for performance evaluation. Through the experiment, the gaze estimation error showed a performance of 3.9, and the estimation speed of the network was 42 FPS (Frames per second).

A Study on Enhancement of 3D Sound Using Improved HRTFS (개선된 머리전달함수를 이용한 3차원 입체음향 성능 개선 연구)

  • Koo, Kyo-Sik;Cha, Hyung-Tai
    • The Journal of the Acoustical Society of Korea
    • /
    • v.28 no.6
    • /
    • pp.557-565
    • /
    • 2009
  • To perceive the direction and the distance of a sound, we always use a couple of information. Head Related Transfer Function (HRTF) contains the information that sound arrives from a sound source to the ears of the listener, like differences of level, phase and frequency spectrum. For a reproduction system using 2 channels, we apply HRTF to many algorithms which make 3d sound. But it causes a problem to localize a sound source around a certain places which is called the cone-of-confusion. In this paper, we proposed the new algorithm to reduce the confusion of sound image localization. The difference of frequency spectrum and psychoacoustics theory are used to boost the spectral cue among each directions. To confirm the performance of the algorithm, informal listening tests are carried out. As a result, we can make the improved 3d sound in 2 channel system based on a headphone. Also sound quality of improved 3d sound is much better than conventional methods.