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Abstract 

 
Visual place recognition (VPR) is a fundamental yet challenging task of mobile robot 
navigation and localization. The existing VPR methods are usually based on some pairwise 
similarity of image descriptors, so they are sensitive to visual appearance change and also 
computationally expensive. This paper proposes a simple yet effective four-step method that 
achieves adaptive convolutional neural network (CNN) landmark matching for VPR. First, 
based on the features extracted from existing CNN models, the regions with higher 
significance scores are selected as landmarks. Then, according to the coordinate positions of 
potential landmarks, landmark matching is improved by removing mismatched landmark pairs. 
Finally, considering the significance scores obtained in the first step, robust image retrieval is 
performed based on adaptive landmark matching, and it gives more weight to the landmark 
matching pairs with higher significance scores. To verify the efficiency and robustness of the 
proposed method, evaluations are conducted on standard benchmark datasets. The 
experimental results indicate that the proposed method reduces the feature representation 
space of place images by more than 75% with negligible loss in recognition precision. Also, it 
achieves a fast matching speed in similarity calculation, satisfying the real-time requirement. 
 
 
Keywords: visual place recognition, CNN, adaptive, landmark, matching 



KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 15, NO. 11, November 2021                          4085 

1. Introduction 

Visual place recognition (VPR) is a fundamental but challenging task of mobile robot 
navigation and localization. In this task, a robot needs to determine whether or not the given 
image contains a place it has already seen [1]. VPR can be regarded as a special case of image 
retrieval problems based on some pairwise similarity of image descriptors. However, the 
solutions to the image retrieval problem are usually sensitive to visual appearance change and 
also can be computationally expensive. Considering that a place may not always be revisited 
from the same viewpoint and position and the appearance of a place can change drastically due 
to environmental changes such as season, illumination, weather, etc., eliminating the influence 
of the environmental variations and improving the accuracy and efficiency of place 
recognition has become a critical challenge in VPR. 

Traditional VPR methods are mainly based on some hand-crafted image descriptors 
including both local features and global features, such as Scale-Invariant Feature Transform 
(SIFT) [2], Speeded-up Robust Features (SURF) [3], and Oriented Fast and Rotated Brief 
(ORB) [4]. Although these methods achieve promising results, the local features suffer from 
appearance variations while global features are prone to viewpoint changes. With the 
tremendous success of deep learning, convolutional neural networks (CNNs) have been 
widely exploited in VPR recently [5]. The early research focuses on directly selecting 
appropriate CNN layers to extract features for global image representation. Although this 
method can achieve high recognition accuracy, it fails to simultaneously handle environment 
and viewpoint variations. To address viewpoint invariance, a landmark-based VPR framework 
based on CNN's description of local features is proposed. In this framework, a set of local 
regions of an image is detected as landmarks and described by a set of CNN feature vectors. 
Meanwhile, the problem of VPR is reduced to landmark matching by calculating the overall 
similarity between images from the matched landmarks. Although the VPR methods based on 
CNN landmarks can achieve good resistance to environment variations and significant 
robustness to viewpoint changes, the success of such methods heavily depends on the quality 
of the landmarks detected to represent images, which essentially is a trade-off between the 
VPR accuracy and computational overhead. 

Our research aims to design a more efficient VPR method based on the pre-trained CNN 
models (Fig. 1). The rationality of landmark selection in our method is ensured by a new 
evaluation index in combination with the removal of location-mismatched landmark pairs. 
Also, adaptive landmark matching is introduced into the CNN features for accurate similarity 
calculation. Experimental results demonstrate that our method can obtain a smaller 
representation space of images and more rapid landmark matching with high precision. The 
main contributions of this paper are summarized as follows: 

 (1) A new evaluation index called significance score is proposed for selecting potential 
landmark areas from the feature maps generated by CNN models. 

(2) A more effective landmark matching algorithm is designed by using outlier analysis to 
remove location-mismatched landmark pairs. 

(3) An adaptive similarity calculation algorithm is proposed to assign more weights to 
landmark matching pairs with higher significance scores. 

(4) An efficient visual place recognition method is proposed, which can reduce the feature 
representation space of place images by more than 75% and can tackle great environmental 
changes. 
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Fig. 1. Illustration of our proposed method 

 
The rest of the paper is organized as follows. Section II provides a brief overview of related 

VPR studies. Section III describes our method in detail; Sections IV presents the testing 
datasets and experimental details. In section V, the proposed method is compared to four 
state-of-the-art VPR methods to verify the robustness of our method. Section VI summarizes 
our method and the future work. 

2. Related Works 
Traditional VPR methods [6, 7, 8] applied hand-crafted features to represent place images 

and aggregated them through pre-trained dictionaries of visual words. The representative 
hand-crafted features were SIFT [2], SURF [3] and ORB [4]. However, these descriptors 
failed to deal with complex changing scenes. As a supervised learning method, CNN attracted 
extensive attention due to its high accuracy and good transferability. In 2012, the AlexNet 
model [9] achieved great success in large-scale image classification. Since then, CNN had 
been widely used in computer vision applications, such as image retrieval [10], image 
classification [11], and object detection [12]. After inputting an image into a pre-trained CNN 
model, the output features extracted from one layer were regarded as the feature representation 
of this image. Features extracted from the shallow layers embodies the contour, texture and 
other shallow information of the image and features extracted from the top layers are more 
robust with respect to deep semantic information. Fundamental works of CNN-based VPR 
methods [13, 14] proved that the features generated from the middle layers in combination 
with shallow texture features and depth semantic features can resist great appearance changes, 
especially for the conv3 and pool5 layers of the AlexNet. This indicated that the pre-trained 
CNN models can also be applied to VPR. Thus, CNN-based VPR systems have become a 
research hotspot. To address environmental changes better, landmark-based VPR frameworks 
combined with CNN features gradually become the mainstream [15]. These frameworks 
considered that VPR should only reserve salient landmark regions and it was not necessary to 
keep the whole CNN features of images. In this case, the problem of VPR can be transformed 
to landmark matching that calculates the similarity between the images of the landmark 
matching pairs. Sunderhauf et al. [16] proposed a standard landmark-based process that 
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consisted of four major steps, including landmark detection, CNN feature extraction, 
dimensionality reduction, and image matching. This method relied on landmark regions 
selected by landmark detector rather than the whole image to describe one place image. 
Similarly, the selected landmark area needed to be scaled to adapt to the input size of CNN 
models. The dimensionality reduction such as Gaussian random projection was used to 
transfer the original features to a space of much lower dimension. Overall, landmark selection 
was the most important step in this process. Since landmark-based VPR frameworks depend 
on the landmark detector, Hou et al. [17] made a comprehensive investigation on the existing 
landmark extraction methods that were not special for VPR, including Edge-Boxes [18], 
Binarized normed gradients (BING) [19], YOLOv2 [20], and Selective Search [21]. The 
results in [17] indicated that the landmarks extracted from BING [19] are the most robust to 
severe environmental changes. Inspired by the window-scoring mechanism in Edge-Boxes 
[18], Yang et al. [22] proposed a new landmark generation method for VPR by using 
multi-scale sliding window (MSW), and the method obtained good results. This method 
formed a uniform distribution in multiple landmark scales within an appropriate range by a 
process that sampled an image with a sliding window, which ensured the uniformity of 
landmark detection distribution. In summary, these landmark-based VPR methods required 
screenshots for all the selected landmark regions and decomposed an image into multiple 
images, leading to low efficiency of landmark matching. Meanwhile, because these landmark 
detectors relied on shallow texture information and lacked semantic understanding of place 
images, landmarks selected were not accurate, and their levels of attention were not 
distinguished. This was not consistent with the human visual perception of the scene. 

In contrast, some researchers attempted to train CNN models specifically for 
landmark-based VPR. Chen et al. [23] firstly collected a massive Specific PlacEs Dataset 
(SPED) for VPR, and the trained CNN model achieved better performance than other 
pre-trained CNN models. SPED collected nearly 2500000 images by 30000 cameras and all 
the images captured by these cameras were taken in February 2014 and August 2014.  This 
dataset covered a wide variety of outdoor scenes, ranging from forest landscapes, country 
roads to urban scenes. Meanwhile, it studied environmental variations, such as lighting 
changes, day-night circles or season changes. Based on a large number of training datasets, 
these methods had made great progress. Arandjelovic et al. [24] designed a CNN layer called 
NetVLAD, which can be trained in an end-to-end pattern for the VPR task. Inspired by the 
dictionaries of visual words, NetVLAD regarded the output of a convolutional layer as several 
local descriptors and aggregated them with a specifically designed pooling layer to obtain the 
effective feature representation. Chen et al. [25, 26] determined salient regions by grouping 
non-zero CNN feature values into individual clusters and building a training dataset to assign 
weights to these regions. For each cluster, its energy was calculated by averaging all the 
activations in this cluster, and only the clusters with large energy could be retained as 
landmarks. Mao et al. [27] put forward a learning-based attention model from the feature 
pyramid by weighting the spatial grids on the original CNN features. This attention model 
built a multi-scale feature pyramid by applying multi-scale pooling at all the spatial locations 
and concatenating the pooled feature maps, which achieved a feature fusion to improve the 
robustness of the learned visual representations. Inspired by the brain architectures of fruit 
flies, Chancan et al. [28] presented a two-layer neural network called FlyNet, which can be 
combined with a continuous attractor neural network to achieve high performance in VPR. 
This method designed an insect-based shallow neural network model without resorting to full 
deep learning architectures. Chen et al. [29] proposed a new multi-constraint loss to optimize 
the distance constraint relationship in the Euclidean space for efficient CNN model training. In 



4088                                                  Chen et al.: Efficient Visual Place Recognition by Adaptive CNN Landmark Matching 

this standard triplet loss method, the tuple composed of three images was used as an input, in 
which two images were of the same category and the other image was of another different 
category. The training purpose is to learn a distinguishing image representation, where the 
distance between images belonging to the same category was minimized and the distance 
between images belonging to different categories was maximized. In summary, the 
training-based landmark VPR methods embodied the characteristics of the attention-based 
model, and the importance of each landmark area for VPR was different. With the support of 
the training datasets and computing resources, these methods performed well in allocating 
landmark weights and achieved the highest positioning accuracy. However, they were not 
efficient in image representation and landmark matching. 

Aiming at these problems, a group of scholars attempted to find another way for efficient 
VPR systems. Based on pre-trained CNN models, they fully analyzed the meaning of the 
original CNN features and made full use of the activations for landmark selection. Chen et al. 
[30] evaluated the feature effectiveness of feature maps obtained from the layer of CNN by 
variance and proposed a novel method that reserved salient feature maps to achieve fast image 
matching. This method greatly reduced the space of image representation to half of the 
original CNN features with a tolerable loss in accuracy. Camara et al. [31, 32, 33] proposed 
semantic and spatial matching VPR (SSM-VPR) that involved global matching-based 
candidate selection, spatial-constrained candidate reduction, and frame correlation processing. 
SSM-VPR extracted feature representations from two layers of a pre-trained CNN model by 
sliding along the layer’s horizontal and vertical directions. Later, Principal Component 
Analysis (PCA) is used to reduce the dimension of image feature representation. The 
spatial-constrained candidate reduction was based on evaluating location consistency of 
matching vectors in both images with respect to the anchor points. Frame correlation 
processing introduced some prior knowledge into the image matching under the premise that 
there existed some time correlation between frames in a mobile robotics environment. 
Experimental results showed that SSM-VPR achieved an impressive recognition effect. 
However, in terms of image representation space and matching efficiency, SSM-VPR was 
inferior to the method in [30]. Besides, the inability to distinguish the saliency of landmark 
areas was also a disadvantage of these methods. A summary of various existing representative 
methods mentioned above is shown in Table 1. 
 

Table 1. The summary of various existing representative methods in VPR 
Category Method 

Hand-crafted features 
Cummins et al. [6] 

Galvez-Lpez et al. [7] 
Torii et al. [8] 

CNN-based features 

Without landmark 
retraining-free 

Sunderhauf et al. [13] 
Hou et al. [14] 

Landmark-based 
retraining-free 

Sunderhauf et al. [16] 
Hou et al. [17] 
Yang et al. [22] 
Chen et al. [30] 

Camara et al. [31, 32, 33] 
Ours 

Landmark-based 
retraining 

Chen et al. [23, 25, 26] 
Arandjelovic et al. [24] 

Mao et al. [27] 
Chancan et al. [28] 

Chen et al. [29] 
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3. Method 
In this section, our proposed method is illustrated in Fig. 1. The sub-graph (a) presents two 

place images for matching; sub-graph (b) represents the feature maps extracted from CNN; 
sub-graph (c) describes the step of region selection and feature encoding by calculating 
significant scores; sub-graph (d) makes landmark matching by using outlier analysis to 
remove spatial-mismatched pairs; sub-graph (e) illustrates the adaptive image matching 
process based on different weights of landmark matching pairs. 

3.1 Feature Extraction from CNN 
The first step in our method is feature extraction from the CNN model, and it is shown in 

the sub-graph (b) of Fig. 1. After an image is input to a pre-trained CNN model, the output 
feature maps of one layer can be defined as the overall characteristic description of this image. 
These feature maps could be described as a cube with a size of 𝑐𝑐 × 𝑤𝑤 × ℎ, i.e., 𝐹𝐹 ∈ 𝑅𝑅𝑤𝑤×ℎ×𝑐𝑐, 
where 𝑤𝑤 and ℎ are respectively the width and height of each feature map, and 𝑐𝑐 is the number 
of feature maps. Formally, the feature maps extracted from the layer of CNN are described in 
Eq. (1). The c-dimensional feature vector 𝑓𝑓𝑖𝑖,𝑗𝑗 can be regarded as the feature representation of a 
certain region in the image. The size of this region is equal to the receptive field of the 
corresponding CNN layer. 
 

𝐹𝐹 = �𝑓𝑓𝑖𝑖,𝑗𝑗 ∈ 𝑅𝑅𝑐𝑐�𝑖𝑖 ∈ {1, … ,𝑤𝑤}, 𝑗𝑗 ∈ {1, … ,ℎ}�    (1) 
 

3.2 Region Selection and Feature Encoding 
In the above step, the feature extracted from the CNN layer can be considered as a set of 

feature representations of 𝑤𝑤 × ℎ regions in the place image. Obviously, not every region needs 
to be preserved. Therefore, the second step in our method is to set evaluation indexes for 
regions and select potential landmark regions from all the 𝑤𝑤 × ℎ regions. 

Typically, a feature map is derived from a continuous operation on the input image, such as 
convolution, pooling, and activation functions. Among them, convolution is the most 
important operation. A feature map can be described as the detection scores of the input image 
after a set of convolution filters. The regions in a place image with high detection scores 
indicate that there exist different kinds of visual patterns that are searched for by the 
convolution filters. In fact, the feature maps at a late convolutional layer are generally sparse. 
The non-zero values in the feature maps are responses to the visual patterns corresponding to 
some semantically meaningful regions, such as a significant fixed goal. When a place is visited 
from different viewpoints and conditions, these visual landmark regions are likely to be 
detected by applying the same series of convolutional filters. 

Based on the above observations, a new evaluation index called significance score is set for 
the c-dimensional feature vector 𝑓𝑓𝑖𝑖,𝑗𝑗, the feature representation of a certain region in the image. 
The significance score includes two factors: the sum of the vector 𝑓𝑓𝑖𝑖,𝑗𝑗 and the number of 
non-zero values of the vector 𝑓𝑓𝑖𝑖,𝑗𝑗, which respectively represent the total detection score and 
the number of responses of the region to various visual patterns. These two factors are 
positively correlated with the significance score. With the continuous increase of the 
complexity of CNN models, more and more learning parameters are needed, and the number 
of extracted feature maps will increase accordingly. In other words, the feature vector 𝑓𝑓𝑖𝑖,𝑗𝑗 may 
have a very large dimension. According to the visualization result of the feature maps 
mentioned in [30], a lot of depth feature values are close to zero. The calculation of the number 
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of non-zero values of the vector 𝑓𝑓𝑖𝑖,𝑗𝑗  may exaggerate the contribution of the close-to-zero 
values to the significance of the region. To avoid too many non-zero values in the vector 𝑓𝑓𝑖𝑖,𝑗𝑗, 
its square root is used in our method.  

The significance scores of all the 𝑤𝑤 × ℎ regions in image A is stored in matrix 𝐸𝐸𝐴𝐴, i.e., 
𝐸𝐸𝐴𝐴 ∈ R𝑤𝑤×ℎ. The c-dimensional feature vector 𝑓𝑓𝑖𝑖,𝑗𝑗𝐴𝐴  is the feature representation of a region with 
the coordinate (𝑖𝑖, 𝑗𝑗) in image A, and the significance score of vector 𝑓𝑓𝑖𝑖,𝑗𝑗𝐴𝐴  is stored in the 
element 𝑒𝑒𝑖𝑖,𝑗𝑗𝐴𝐴  of matrix 𝐸𝐸𝐴𝐴. Define the function 𝑆𝑆(𝑓𝑓) as summing the values in vector 𝑓𝑓 and the 
function 𝑄𝑄(𝑓𝑓) as counting the number of non-zero values on vector 𝑓𝑓. The significance score 
of vector 𝑓𝑓𝑖𝑖,𝑗𝑗𝐴𝐴  is calculated in Eq. (2). 
 

𝑒𝑒𝑖𝑖,𝑗𝑗𝐴𝐴 = 𝑆𝑆�𝑓𝑓𝑖𝑖,𝑗𝑗𝐴𝐴� × �𝑄𝑄�𝑓𝑓𝑖𝑖,𝑗𝑗𝐴𝐴�               (2) 
 

The threshold 𝑡𝑡𝑙𝑙 is set to determine the proportion of the reserved image regions. The 
proposed method chooses potential landmarks according to the significance scores sorted from 
high to low by the threshold 𝑡𝑡𝑙𝑙. In this way, a limited number of regions are reserved, and the 
dimension of original CNN features is reduced. Denote the k-th largest value of the matrix 𝐸𝐸 
as 𝑟𝑟𝐸𝐸𝑘𝑘. After region selection and feature encoding, the feature representations 𝐿𝐿𝐿𝐿_𝐹𝐹 ∈ 𝑅𝑅𝑛𝑛×𝑐𝑐 
of potential landmarks are obtained by the proposed method, and the corresponding horizontal 
and vertical coordinates are defined as 𝐿𝐿𝐿𝐿_𝑃𝑃 ∈ 𝑅𝑅𝑛𝑛×2 . Note that the number of potential 
landmarks is 𝑛𝑛 = ⌊𝑤𝑤 × ℎ × 𝑡𝑡𝑙𝑙⌋. The algorithm of region selection and feature encoding is 
listed in Table 2, and its execution process is shown in the sub-graph (c) of Fig. 1. The time 
complexity of this algorithm is analyzed as follows. From the 1-st row to the 7-th row, the time 
complexity is 𝑂𝑂(𝑤𝑤ℎ𝑐𝑐); from the 9-th row to the 15-th row, the time complexity is 𝑂𝑂(𝑤𝑤ℎ).  
Since the value of 𝑟𝑟𝐸𝐸𝑘𝑘  can be determined by the Divide-and-conquer method, the time 
complexity of the 8-th row is 𝑂𝑂(𝑤𝑤ℎ). Overall, the time complexity of this algorithm is 
𝑂𝑂(𝑤𝑤ℎ𝑐𝑐). 
 

Table 2. The algorithm for region selection and feature encoding 
Algorithm 1: Region selection and feature encoding 
Input: F ∈ R𝑤𝑤×ℎ×𝑐𝑐, 𝑡𝑡𝑙𝑙 
Output: 𝐿𝐿𝐿𝐿_𝐹𝐹, 𝐿𝐿𝐿𝐿_𝑃𝑃, 𝑛𝑛 
Procedure: 
1    𝑛𝑛 =  ⌊𝑤𝑤 × ℎ × 𝑡𝑡𝑙𝑙⌋ 
2   Initialize 𝐿𝐿𝐿𝐿_𝐹𝐹, 𝐿𝐿𝐿𝐿_𝑃𝑃 
3    for 𝑖𝑖 = 0 to 𝑤𝑤 
4         for 𝑗𝑗 = 0 to ℎ 
5              calculate the significance score 𝑒𝑒𝑖𝑖,𝑗𝑗 in Eq. (2) 
6         end for 
7    end for 
8    Initialize 𝑟𝑟𝐸𝐸𝑛𝑛  
9    for 𝑖𝑖 = 0 to 𝑤𝑤 
10       for 𝑗𝑗 = 0 to ℎ 
11             if  E𝑖𝑖,𝑗𝑗 > 𝑟𝑟𝐸𝐸𝑛𝑛 
12                 add 𝑓𝑓𝑖𝑖,𝑗𝑗 to 𝐿𝐿𝐿𝐿_𝐹𝐹  
13                 add (𝑖𝑖, 𝑗𝑗) to 𝐿𝐿𝐿𝐿_𝑃𝑃 
14       end for 
15  end for 
16  return 𝐿𝐿𝐿𝐿_𝐹𝐹, 𝐿𝐿𝐿𝐿_𝑃𝑃, 𝑛𝑛 
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3.3 Landmark matching by outlier analysis 
After obtaining the coordinates and feature representations of potential landmarks, our 

method determines whether the landmarks from different images match. If two images are 
taken in the same place from different viewpoints and they contain a proportion of the same 
scene content, a fixed spatial relationship between the landmarks will be preserved. Therefore, 
landmark matching pairs are likely to have a similar position offset. The coordinate (𝑖𝑖, 𝑗𝑗) 
mentioned above can be regarded as the spatial position of landmarks. Also, the potential 
landmarks can be further optimized according to the spatial location relations.  

The areas with higher feature similarity are more likely to be the same regions in one place. 
Denote the feature representations of potential landmarks of the place images A and B as 
𝐿𝐿𝐿𝐿_𝐹𝐹𝐴𝐴  and 𝐿𝐿𝐿𝐿_𝐹𝐹𝐵𝐵 , respectively. Meanwhile, the corresponding horizontal and vertical 
coordinates are denoted as 𝐿𝐿𝐿𝐿_𝑃𝑃𝐴𝐴 and 𝐿𝐿𝐿𝐿_𝑃𝑃𝐵𝐵, respectively. Then, the feature representation 
of the i-th potential landmark in place image A is defined as 𝐿𝐿𝐿𝐿_𝐹𝐹𝐴𝐴[𝑖𝑖] ∈ 𝑅𝑅1×𝑐𝑐, and the feature 
representation of the j-th potential landmark in place image B is defined as 𝐿𝐿𝐿𝐿_𝐹𝐹𝐵𝐵[𝑗𝑗] ∈ 𝑅𝑅1×𝑐𝑐. 
The feature similarity between the potential landmarks of images A and B are calculated by 
cosine distance, and the calculation formula is shown in Eq. (3). The time complexity of 
calculating the cosine distance between two c-dimensional feature vectors is 𝑂𝑂(𝑐𝑐). 
 

𝐶𝐶𝐶𝐶𝐶𝐶(𝐿𝐿𝐿𝐿_𝐹𝐹𝐴𝐴[𝑖𝑖], 𝐿𝐿𝐿𝐿_𝐹𝐹𝐵𝐵[𝑗𝑗]) = ∑ (𝐿𝐿𝐿𝐿_𝐹𝐹𝐴𝐴[𝑖𝑖])𝑘𝑘×(𝐿𝐿𝐿𝐿_𝐹𝐹𝐵𝐵[𝑗𝑗])𝑘𝑘𝑐𝑐
𝑘𝑘=1

�∑ [(𝐿𝐿𝐿𝐿_𝐹𝐹𝐴𝐴[𝑖𝑖])𝑘𝑘]2𝑐𝑐
𝑘𝑘=1 ×�∑ [(𝐿𝐿𝐿𝐿_𝐹𝐹𝐵𝐵[𝑗𝑗])𝑘𝑘]2𝑐𝑐

𝑘𝑘=1

   (3) 

 
The matrix D ∈ R𝑛𝑛×𝑛𝑛  is a similarity matrix that stores the cosine distance between 

𝐿𝐿𝐿𝐿_𝐹𝐹𝐴𝐴[𝑖𝑖] (𝑖𝑖 ∈ {1, … ,𝑛𝑛}) and 𝐿𝐿𝐿𝐿_𝐹𝐹𝐵𝐵[𝑗𝑗] (𝑗𝑗 ∈ {1, … ,𝑛𝑛}). According to the significance scores 
ordered from high to low, the potential landmark of A picks the best matching potential 
landmark of B in a non-returning manner. The formal description of the matching pairs 𝑀𝑀𝑝𝑝 is 
shown described in Eq. (4), where 𝑥𝑥𝑎𝑎𝑎𝑎 and 𝑦𝑦𝑎𝑎𝑖𝑖  are respectively the horizontal and vertical 
coordinates of the i-th pair in image A; 𝑥𝑥𝑏𝑏𝑏𝑏 and 𝑦𝑦𝑏𝑏𝑏𝑏 are respectively the horizontal and vertical 
coordinates of the i-th pair in image B. Note that (𝑥𝑥𝑎𝑎𝑎𝑎,𝑦𝑦𝑎𝑎𝑎𝑎) ∈ 𝐿𝐿𝐿𝐿_𝑃𝑃𝐴𝐴 and (𝑥𝑥𝑏𝑏𝑏𝑏,𝑦𝑦𝑏𝑏𝑏𝑏) ∈ 𝐿𝐿𝐿𝐿_𝑃𝑃𝐵𝐵. 
 

𝑀𝑀𝑝𝑝 = ��𝑓𝑓𝑥𝑥𝑎𝑎𝑎𝑎,𝑦𝑦𝑎𝑎𝑎𝑎
𝐴𝐴 ,𝑓𝑓𝑥𝑥𝑏𝑏𝑏𝑏,𝑦𝑦𝑏𝑏𝑏𝑏

𝐵𝐵 ��𝑖𝑖 ∈ {1, … ,𝑛𝑛}�               (4) 
 

The calculation of the position offset is shown in Eq. (5): 
 

𝑃𝑃𝑜𝑜 = �(𝑥𝑥𝑎𝑎𝑎𝑎 − 𝑥𝑥𝑏𝑏𝑏𝑏,𝑦𝑦𝑎𝑎𝑎𝑎 − 𝑦𝑦𝑏𝑏𝑏𝑏)�𝑖𝑖 ∈ {1, … ,𝑛𝑛}�                      (5) 
 

Each element of 𝑃𝑃𝑜𝑜 is a two-dimensional point. If the landmark matching above is effective, 
most of the points in 𝑃𝑃𝑜𝑜 are concentrated in one piece, and the points away from the center 
areas should be abandoned. This requires data clustering and outlier analysis to ensure the 
quality of landmark matching. Clustering algorithms have been extensively studied in recent 
years [34, 35, 36, 37]. Local Outlier Factor (LOF) [38] can be used to find outliers and remove 
these matching pairs. LOF is a density-based classical algorithm, and its core idea is that the 
anomaly of a point depends on the local environment. Especially, the fewer neighbors, the 
more likely a point is an outlier. Our method calculates the number of neighbors for each point 
based on the k-neighbors-graph. The proportion of the normal point is denoted as 𝑡𝑡𝑎𝑎. After the 
potential landmark matching is conducted by outlier analysis on the spatial-location relations, 
the number of landmark matching pairs 𝑣𝑣 = ⌊𝑛𝑛 × 𝑡𝑡𝑎𝑎⌋. The process is shown in the sub-graph 
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(d) of Fig. 1. 
Define the function 𝐹𝐹(𝐷𝐷𝑖𝑖) as obtaining the row number of the largest value in the i-th 

column of the matrix D. The algorithm of landmark matching is listed in Table 3. After the 
execution of this algorithm, our method obtains the feature representations of landmarks of the 
place images A and B, i.e., 𝑁𝑁𝐿𝐿𝐿𝐿_𝐹𝐹𝐴𝐴 ∈ 𝑅𝑅𝑣𝑣×𝑐𝑐  and 𝑁𝑁𝐿𝐿𝐿𝐿_𝐹𝐹𝐵𝐵 ∈ 𝑅𝑅𝑣𝑣×𝑐𝑐 . Also, 𝑁𝑁𝐿𝐿𝐿𝐿_𝑃𝑃𝐴𝐴 ∈ 𝑅𝑅𝑣𝑣×2 
and 𝑁𝑁𝐿𝐿𝐿𝐿_𝑃𝑃𝐵𝐵 ∈ 𝑅𝑅𝑣𝑣×2, the corresponding horizontal and vertical coordinates of the landmarks 
in the place image A and B, are also available. Specifically, (𝑁𝑁𝐿𝐿𝐿𝐿_𝐹𝐹𝐴𝐴[𝑗𝑗],𝑁𝑁𝐿𝐿𝐿𝐿_𝐹𝐹𝐵𝐵[𝑗𝑗]) are the 
feature representations of the j-th matching pair between the images A and B; 
(𝑁𝑁𝐿𝐿𝐿𝐿_𝐹𝐹𝐴𝐴[𝑗𝑗],𝑁𝑁𝐿𝐿𝐿𝐿_𝐹𝐹𝐵𝐵[𝑗𝑗] )  are the corresponding coordinates of the j-th landmark pair 
between images A and B. The time complexity of this algorithm shown in Table 2 is analyzed 
as follows. From the 1-st row to the 6-th row, the time complexity is 𝑂𝑂(𝑤𝑤2ℎ2𝑐𝑐); from the 7-th 
row to the 14-th row and from the 18-th row to the 26-th row, the time complexity is 𝑂𝑂(𝑤𝑤2ℎ2). 
The time complexity of the LOF algorithm is proved to be 𝑂𝑂(𝑤𝑤2ℎ2) [38]. Overall, the time 
complexity of this algorithm is 𝑂𝑂(𝑤𝑤2ℎ2𝑐𝑐). 
 

Table 3. The algorithm for landmark matching by outlier analysis 
Algorithm 2: The algorithm for landmark matching by outlier analysis 
Input: 𝐿𝐿𝐿𝐿_𝐹𝐹𝐴𝐴, 𝐿𝐿𝐿𝐿_𝐹𝐹𝐵𝐵, 𝐿𝐿𝐿𝐿_𝑃𝑃𝐴𝐴, 𝐿𝐿𝐿𝐿_𝑃𝑃𝐵𝐵, 𝑛𝑛, 𝑡𝑡𝑎𝑎 
Output: 𝑁𝑁𝐿𝐿𝐿𝐿_𝐹𝐹𝐴𝐴, 𝑁𝑁𝑁𝑁𝑁𝑁_𝐹𝐹𝐵𝐵, 𝑁𝑁𝐿𝐿𝐿𝐿_𝑃𝑃𝐴𝐴, 𝑁𝑁𝑁𝑁𝑁𝑁_𝑃𝑃𝐵𝐵 , 𝑣𝑣 
Procedure: 
1    Initialize 𝑁𝑁𝐿𝐿𝐿𝐿_𝐹𝐹𝐴𝐴, 𝑁𝑁𝑁𝑁𝑁𝑁_𝐹𝐹𝐵𝐵, 𝑁𝑁𝐿𝐿𝐿𝐿_𝑃𝑃𝐴𝐴, 𝑁𝑁𝑁𝑁𝑁𝑁_𝑃𝑃𝐵𝐵 , 𝑀𝑀𝑃𝑃, 𝑃𝑃𝑂𝑂 
2    for 𝑖𝑖 = 0 to 𝑛𝑛 
3         for 𝑗𝑗 = 0 to 𝑛𝑛 
4              𝐷𝐷𝑖𝑖 ,𝑗𝑗 = 𝐶𝐶𝐶𝐶𝐶𝐶(𝐿𝐿𝐿𝐿_𝐹𝐹𝐴𝐴[𝑖𝑖], 𝐿𝐿𝐿𝐿_𝐹𝐹𝐵𝐵[𝑗𝑗]) 
5         end for 
6    end for 
7    for 𝑖𝑖 = 0 to 𝑛𝑛 
8         𝑘𝑘 = 𝐹𝐹(𝐷𝐷𝑖𝑖) 
9         set all the values of the k-th row of matrix D to 0 
10       add (𝐿𝐿𝐿𝐿_𝐹𝐹𝐴𝐴[𝑖𝑖], 𝐿𝐿𝐿𝐿_𝐹𝐹𝐵𝐵[𝑘𝑘]) to 𝑀𝑀𝑃𝑃 
11       add (𝐿𝐿𝐿𝐿_𝑃𝑃𝐴𝐴[𝑖𝑖] − 𝐿𝐿𝐿𝐿_𝑃𝑃𝐵𝐵[𝑘𝑘]) to 𝑃𝑃𝑜𝑜 
12       add 𝐿𝐿𝐿𝐿_𝐹𝐹𝐵𝐵[𝑘𝑘] to 𝑁𝑁𝐿𝐿𝐿𝐿_𝐹𝐹𝐵𝐵 
13       add 𝐿𝐿𝐿𝐿_𝑃𝑃𝐵𝐵[𝑘𝑘] to 𝑁𝑁𝑁𝑁𝑁𝑁_𝑃𝑃𝐵𝐵  
14   end for 
15   do LOF for 𝑃𝑃𝑜𝑜 
16   get K-neighbors-graph 𝐺𝐺 ∈ 𝑅𝑅𝑛𝑛×𝑛𝑛  

17   sum each column of 𝐺𝐺 to get a new vector 𝐿𝐿 ∈ 𝑅𝑅𝑛𝑛 
18   𝑣𝑣 = ⌊𝑛𝑛 × 𝑡𝑡𝑎𝑎⌋ 
19   for 𝑖𝑖 = 0 to 𝑛𝑛 
20       if 𝐿𝐿[𝑖𝑖] < 𝑟𝑟𝐿𝐿𝑣𝑣  
21            remove 𝐿𝐿𝐿𝐿_𝐹𝐹𝐴𝐴[𝑖𝑖] from 𝐿𝐿𝐿𝐿_𝐹𝐹𝐴𝐴 
22            remove 𝑁𝑁𝑁𝑁𝑁𝑁_𝐹𝐹𝐵𝐵[𝑖𝑖] from 𝑁𝑁𝑁𝑁𝑁𝑁_𝐹𝐹𝐵𝐵 
23            remove 𝐿𝐿𝐿𝐿_𝑃𝑃𝐴𝐴[𝑖𝑖] from 𝐿𝐿𝐿𝐿_𝑃𝑃𝐴𝐴 
24            remove 𝑁𝑁𝑁𝑁𝑁𝑁_𝑃𝑃𝐵𝐵[𝑖𝑖] from 𝑁𝑁𝑁𝑁𝑁𝑁_𝑃𝑃𝐵𝐵  
25   end for 
26   𝑁𝑁𝐿𝐿𝐿𝐿_𝐹𝐹𝐴𝐴 = 𝐿𝐿𝐿𝐿_𝐹𝐹𝐴𝐴, 𝑁𝑁𝐿𝐿𝐿𝐿_𝑃𝑃𝐴𝐴 = 𝐿𝐿𝐿𝐿_𝑃𝑃𝐴𝐴  
27   return 𝑁𝑁𝐿𝐿𝐿𝐿_𝐹𝐹𝐴𝐴, 𝑁𝑁𝑁𝑁𝑁𝑁_𝐹𝐹𝐵𝐵, 𝑁𝑁𝐿𝐿𝐿𝐿_𝑃𝑃𝐴𝐴, 𝑁𝑁𝑁𝑁𝑁𝑁_𝑃𝑃𝐵𝐵, 𝑣𝑣 
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3.4 Adaptive Similarity Calculation based on Landmark Matching 
After the correct landmark matching pairs are obtained, the adaptive similarity between 

two place images is calculated by giving more weights to the landmark matching pairs with 
higher significance scores. The calculation process is shown in the sub-graph (e) of Fig. 1. The 
distinction of the importance of landmark areas is consistent with the VPR system of humans. 
In this proposed algorithm, the importance degree of one matching pair is calculated by 
multiplying the two significant scores of the landmarks in this pair and normalizing the result. 
Later, the similarity of this pair is obtained by multiplying the cosine distance between the 
landmarks in this pair by the corresponding importance degree. Finally, the overall similarity 
𝑆𝑆𝐴𝐴,𝐵𝐵 between the images A and B is the sum of the similarity of all the landmark matching 
pairs, which is shown in Eq. (6). The time complexity of calculating 𝑆𝑆𝐴𝐴,𝐵𝐵 is 𝑂𝑂(𝑤𝑤ℎ𝑐𝑐). 
 

𝑆𝑆𝐴𝐴,𝐵𝐵 = ∑ 𝐶𝐶𝐶𝐶𝐶𝐶(𝑁𝑁𝐿𝐿𝐿𝐿_𝐹𝐹𝐴𝐴[𝑗𝑗],𝑁𝑁𝐿𝐿𝐿𝐿_𝐹𝐹𝐵𝐵[𝑗𝑗])𝑣𝑣
𝑗𝑗=1 ×

𝐸𝐸𝑁𝑁𝐿𝐿𝐿𝐿_𝑃𝑃𝐴𝐴[𝑗𝑗]
𝐴𝐴 ×𝐸𝐸𝑁𝑁𝐿𝐿𝐿𝐿_𝑃𝑃𝐵𝐵[𝑗𝑗]

𝐵𝐵

∑ 𝐸𝐸𝑁𝑁𝐿𝐿𝐿𝐿_𝑃𝑃𝐴𝐴[𝑖𝑖]
𝐴𝐴 ×𝐸𝐸𝑁𝑁𝐿𝐿𝐿𝐿_𝑃𝑃𝐵𝐵[𝑖𝑖]

𝐵𝐵𝑣𝑣
𝑖𝑖=1

              (6) 

 
Searching for the best-matching image with image A needs to go through all the images in 

the dataset and pick the one with the highest similarity score. 

4. Datasets and Experimental Details 
To verify the effectiveness of our method, three benchmark datasets for VPR are selected 

to compare our method with several state-of-the-art methods. The experimental details and 
datasets are described as follows. 

4.1 Benchmark Datasets 
Three representative benchmark datasets are used to test the proposed method. The datasets 

involve complex scenario changes with great condition changes and viewpoint changes, and 
they are widely used to verify the effectiveness of the VPR algorithm. The key information of 
these benchmark datasets is summarized in Table 4. 
 

Table 4. Descriptions of the testing datasets 
Dataset/Sub-dataset Ref. /Query images Condition changes Viewpoint changes 
Gardens-Point 200/200 Severe Severe 
Synthesized Nordland 1622/1622 Severe Moderate 
Berlin A100 81/85 Moderate Severe 
Berlin Haleenseetrasse 157/67 Moderate Severe 
Berlin Kudamm 201/222 Moderate Severe 

 
Specifically, the Gardens-Point dataset [13] recorded a single route through the 

Gardens-Point Campus in Queensland University of Technology by iPhone 5. The route was 
traversed three times, twice during the day and once at night. The day route traversing the left 
side was compared with the night route traversing on the right side to reflect scene changes, 
including viewpoint, illumination, and walking person. 200 images were recorded in the 
day-left or night-right conditions. This dataset provided severe conditions and viewpoint 
changes. 

Synthesized Nordland dataset [25] included two video footages that were provided by 
Norwegian Broadcasting Corporation (NRK). It recorded Norway’s northernmost railway 
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linking Trondheim and Bodø across spring and winter seasons. The duration of each video was 
nearly 10 hours. Since these videos were taken on the train, this dataset involved severe 
condition changes related to season factors and moderate viewpoint changes. 1622 images 
were filmed in summer or winter. 

Mapillary dataset [39] was built by Google Street View that allowed users to upload 
sequences of GPS-tagged photos and download these sequences. Since many roads had been 
mapped by different people, this dataset was suitable for VPR under normal conditions. In this 
dataset, three sub-datasets (Berlin Haleenseetrasse, Berlin Kudamm, and Berlin A100) were 
constructed by taking 224, 423, 166 images in the street of Berlin city, presenting severe 
viewpoint changes with moderate condition changes. Each sub-dataset needed to be tested 
independently. 

4.2 Experimental Details 
VGG-16 [40] model is a CNN model for image classification. It is more complex than 

AlexNet and achieves better performance in VPR. The conv5-2 layer of VGG-16 is a middle 
layer that fuses deep and shallow feature information, and it is suitable for place feature 
representation [17, 25, 26, 27]. Therefore, the conv5-2 layer of VGG-16 is used to extract 
feature representations. After one place image is input to the VGG-16 model, the size of the 
feature maps extracted from the conv5-2 layer of VGG-16 is 512×14×14, indicating that the 
image is divided into 196 regions. The receptive field of the conv5-2 layer on the input image 
is 164×164. Before inputting into the VGG-16 model, the images are resized to 224×244 to fit 
the input size. For good illustration effect, the most significant three landmark pairs obtained 
by our method are illustrated. Meanwhile, several sets of thresholds 𝑡𝑡𝑙𝑙 and 𝑡𝑡𝑎𝑎 are selected to 
test our method. Putting all the feature maps extracted from the conv5-2 layer of VGG-16 into 
a one-dimensional vector for similarity calculation by cosine distance is used to verify the 
effectiveness of our method, which is independent of the thresholds 𝑡𝑡𝑙𝑙 and 𝑡𝑡𝑎𝑎. Besides, to 
prove the effectiveness of our method, normal cosine distance and adaptive similarity 
calculation are performed for a comparative experiment.  

Several state-of-the-art methods are chosen for performance comparison, including the 
landmark-based retraining (LBR) method based on the VGG-16 model proposed by [26], the 
landmark-based retraining-free (LRF) method based on BING and VGG-16 model proposed 
by [17], the reserving salient feature maps (RSF) method based on AlexNet model proposed 
by [30], and one SSM-VPR pipeline (SSM) method proposed by [31]. 

The area under the Curve (AUC) [41] is suitable to evaluate the classifier’s performance. 
The higher the value of AUC, the better the classifier is. In this study, the AUC is chosen as the 
evaluation metric. Like [26], a match is true positive (TP) if it is within 0±3 for the 
Gardens-Point dataset or 0±2 frames for the Mapillary dataset and Synthesized Nordland 
dataset. The precision is calculated as the proportion of TP matches to all the matches selected; 
the recall is calculated as the proportion of TP matches to the total number of correct matches. 
Besides, the VPR performance is also evaluated by the overall recognition accuracy, which is 
the precision at 100% recall.  

5. Results 

5.1 Results on the Gardens-Point Dataset 
Table 5 lists the AUC and overall accuracy of the proposed method under different 

thresholds on the Gardens-Point dataset based on the VGG-16 model. It can be seen that 



KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 15, NO. 11, November 2021                          4095 

properly discarding some image areas and mismatched landmark pairs could lead to better 
recognition results, especially in the case of 𝑡𝑡𝑙𝑙=0.4 and 𝑡𝑡𝑎𝑎=0.6. This proves the validity of the 
main innovations of this paper. 
 

Table 5. The AUC and overall accuracy of the proposed method under different thresholds on the 
Gardens-Point dataset 

Threshold 𝐭𝐭𝐥𝐥 
in step 2 

Threshold 𝐭𝐭𝐚𝐚 
in step 3 

Similarity Calculation 
in step 4 AUC Overall 

Accuracy 
None None Cosine distance 0.532 0.491 
0.2 1.0 Cosine distance 0.735 0.605 
0.4 1.0 Cosine distance 0.762 0.675 
0.6 1.0 Cosine distance 0.718 0.650 
0.8 1.0 Cosine distance 0.637 0.633 
1.0 1.0 Cosine distance 0.608 0.580 
0.4 0.2 Cosine distance 0.793 0.695 
0.4 0.4 Cosine distance 0.801 0.730 
0.4 0.6 Cosine distance 0.813 0.795 
0.4 0.8 Cosine distance 0.783 0.770 
0.4 0.6 Adaptive Similarity (Ours) 0.842 0.825 

 
Fig. 2 presents the AUC and overall accuracy of different methods for landmark selection 

on the Gardens-Point dataset. From top to bottom, the sub-graph (c) of Fig. 2 shows the 
landmarks selected by the proposed method, BING-based LRF, and LBR methods. The two 
images in the same row are taken in the same place. There are a variety of visual signs in this 
dataset. The SSM method achieves the highest recognition accuracy due to the large area of 
the selected landmarks. Our method achieves the second-best performance, which is mainly 
attributed to the effectiveness of landmark selection and matching. It can be seen from the 
sub-graph (c) that our method reserves the main significant regions and maintains the spatial 
consistency in tentages, buildings, etc. Compared with the BING-based LRF and LBR method, 
our method is more effective in selecting landmarks. 
 

 
Fig. 2. The AUC and overall accuracy of the landmark selection generated by different methods on the 

Gardens-Point dataset 
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5.2 Results on the Synthesized Nordland Dataset 
Table 6 lists the AUC and overall accuracy of our method under different thresholds on the 

Synthesized Nordland dataset based on the VGG-16 model. It can be seen that landmarks in 
this dataset are intensive and limited in the area. Also, properly discarding some image areas 
and mismatched landmark pairs could lead to better recognition results, especially in the case 
of 𝑡𝑡𝑙𝑙=0.6 and 𝑡𝑡𝑎𝑎=0.4. This proves the validity of the main innovations mentioned in this paper. 
 
Table 6. The AUC and overall accuracy of our method under different thresholds on the Synthesized 

Nordland dataset 
Threshold 𝐭𝐭𝐥𝐥 

in step 2 
Threshold 𝐭𝐭𝐚𝐚 

in step 3 
Similarity Calculation 

in step 4 AUC Overall 
Accuracy 

None None Cosine distance 0.518 0.473 
0.2 1.0 Cosine distance 0.562 0.508 
0.4 1.0 Cosine distance 0.597 0.541 
0.6 1.0 Cosine distance 0.613 0.585 
0.8 1.0 Cosine distance 0.579 0.527 
1.0 1.0 Cosine distance 0.557 0.483 
0.6 0.2 Cosine distance 0.675 0.663 
0.6 0.4 Cosine distance 0.703 0.757 
0.6 0.6 Cosine distance 0.662 0.732 
0.6 0.8 Cosine distance 0.646 0.698 
0.6 0.4 Adaptive Similarity (Ours) 0.736 0.794 

 
Fig. 3 presents the AUC and overall accuracy of different methods for landmark selection 

on the Synthesized Nordland dataset. From top to bottom, the sub-graph (c) of Fig. 3 shows 
the landmarks selected by the proposed method and BING-based LRF and LBR methods. The 
two images in the same row are taken in the same place. Under strong conditions changes in 
the natural environment, the rail track information is the key effective landmark information. 
Because of the feature preservation of rail and its adjacent areas, the SSM method achieves the 
best performance. Our method obtains the second-best result and completely retains track 
regions. As for the BING-based LRF method, it retains the critical landmarks, though there is 
confusion in the landmarks. Due to the lack of landmark information on rails, the accuracy of 
the LBR method is low. 
 

 
Fig. 3. The AUC and overall accuracy of different methods for landmark selection on the Synthesized 

Nordland dataset 
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5.3 Results on the Mapillary Dataset 
Table 7 lists the AUC and overall accuracy of our method under different thresholds on the 

Mapillary dataset based on the VGG-16 model. It can be seen that properly discarding some 
image areas and mismatched landmark pairs could lead to better recognition results, especially 
in the case of 𝑡𝑡𝑙𝑙=0.4 and 𝑡𝑡𝑎𝑎=0.4. This proves the validity of the main innovations mentioned in 
this paper. 
 

Table 7. The AUC and overall accuracy of our method under different thresholds on the Mapillary 
dataset 

Threshold 𝐭𝐭𝐥𝐥 
in step 2 

Threshold 𝐭𝐭𝐚𝐚 
in step 3 

Similarity Calculation 
in step 4 AUC Overall 

Accuracy 
Berlin Kudamm sub-dataset 

None None Cosine distance 0.558 0.527 
0.2 1.0 Cosine distance 0.591 0.584 
0.4 1.0 Cosine distance 0.628 0.606 
0.6 1.0 Cosine distance 0.622 0.590 
0.8 1.0 Cosine distance 0.583 0.562 
1.0 1.0 Cosine distance 0.546 0.525 
0.4 0.2 Cosine distance 0.689 0.776 
0.4 0.4 Cosine distance 0.712 0.818 
0.4 0.6 Cosine distance 0.706 0.723 
0.4 0.8 Cosine distance 0.658 0.685 
0.4 0.4 Adaptive Similarity (Ours) 0.743 0.821 

Berlin Haleenseetrasse sub-dataset 
None None Cosine distance 0.589 0.543 
0.2 1.0 Cosine distance 0.648 0.591 
0.4 1.0 Cosine distance 0.651 0.623 
0.6 1.0 Cosine distance 0.663 0.634 
0.8 1.0 Cosine distance 0.642 0.587 
1.0 1.0 Cosine distance 0.617 0.548 
0.6 0.2 Cosine distance 0.716 0.652 
0.6 0.4 Cosine distance 0.769 0.725 
0.6 0.6 Cosine distance 0.712 0.677 
0.6 0.8 Cosine distance 0.683 0.629 
0.6 0.4 Adaptive Similarity (Ours) 0.795 0.759 

Berlin A100 sub-dataset 
None None Cosine distance 0.515 0.497 
0.2 1.0 Cosine distance 0.566 0.568 
0.4 1.0 Cosine distance 0.589 0.592 
0.6 1.0 Cosine distance 0.551 0.531 
0.8 1.0 Cosine distance 0.534 0.506 
1.0 1.0 Cosine distance 0.503 0.488 
0.4 0.2 Cosine distance 0.637 0.676 
0.4 0.4 Cosine distance 0.659 0.705 
0.4 0.6 Cosine distance 0.636 0.648 
0.4 0.8 Cosine distance 0.601 0.613 
0.4 0.4 Adaptive Similarity (Ours) 0.687 0.724 
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Fig. 4 presents the AUC and overall accuracy of different methods for landmark selection 
on the Mapillary dataset. From left to right, the sub-graph (a) of Fig. 4 shows the landmarks 
selected by the proposed method and BING-based LRF and LBR methods. The two images in 
the same column are taken in the same place. There are too many dynamic objects such as cars 
and pedestrians in the urban environment, which makes the task of VPR challenging. Our 
method achieves satisfactory results and reflects the benefits of using small landmark regions. 
It can be seen from the sub-graph (a) that our method reserves the main significant regions 
with guideposts and maintains spatial consistency. The LBR method is suitable for urban 
scenery with a lot of moving objects and severe environmental changes. Compared with the 
BING-based LRF method, our method is more effective in selecting landmarks. 
 

 
Fig. 4. The AUC and overall accuracy of different methods for landmark selection on the Mapillary 

dataset 
 

5.4 Image Storage and Runtime 
When the thresholds 𝑡𝑡𝑙𝑙 and 𝑡𝑡𝑎𝑎 are respectively set to 0.4 and 0.6, 24% original features are 

extracted from the CNN model, and our method achieves almost the best results. When the 
size of features extracted from the conv5-2 layer of VGG-16 is 512×14×14, our method uses 
nearly 24000 depth feature values to represent one image. Since double-precision floating 
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points values are used in CNN, the storage space of a depth feature value from CNN is 2 bytes, 
and the feature representation of one image in our method takes a disk space of about 48kB. In 
comparison, the LRF method selects 100 landmarks, and each landmark is encoded by 1024 
depth feature values, so it uses 200kB of disk space to represent one image. The LBR method 
has 200 regions in an image based on the non-zero values in the conv5-3 layer of VGG-16. 
Therefore, it uses nearly 786kB of disk space to represent one image [42]. The RSF method is 
a salient feature selection algorithm that reserves half original features from CNN models, 
indicating that the representation of each image takes a disk space of 98kB. The SSM method 
needs 175kB of disk space to represent each image. Compared with these algorithms 
mentioned above, our method achieves the highest efficiency of feature representation. 

Table 8 lists the image storage and runtime comparison between these methods. Generally, 
after finishing the feature extraction from the CNN layer, the time complexity of our method to 
calculate the similarity of two images is 𝑂𝑂(𝑤𝑤2ℎ2𝑐𝑐). As listed in Table 7, the process region 
selection and landmark matching by outlier analysis occupy most of the time. For a single 
image, one forward pass through the VGG16 model costs about 1.04s, and depth feature 
encoding takes about 1.28s. The use of our method for image similarity matching within 200 
images only takes 6.35s, while the use of the RSF method takes 4.86s less time. The RSF 
method is faster than the proposed method because of the binarization of CNN features. It is 
worth noting that the above experiments are conducted under the same experiment 
configuration as [30], and the Caffe deep learning framework [43] is used for feature 
extraction from CNN. Besides, it can be seen from the comparison with the RSF method that 
when the recognition accuracy is improved, the mining and processing time of depth feature 
information will increase accordingly. Generally, compared with other methods, the running 
time of our method is satisfactory, especially in the case of weak computing power.  
 

Table 8. Image storage and runtime comparison between different methods 

Method Image 
storage 

Need for 
retraining Time-consuming situation Hardware configuration 

Ours 48kB No 
Forward pass by GPU: 1.04s 

Feature encoding by CPU: 1.28s 
Image matching by CPU: 31.8ms 

GPU: NVIDIA GT940M 
CPU: Intel i5-5200U 

LBR  
[26] 786kB Yes 

Forward pass by GPU:  0.31s 
Feature encoding by CPU: 1.33s 
Image matching by CPU: 50ms 

GPU: NVIDIA P100 
CPU: Intel Xeon Gold-6134 

LRF  
[17] 200kB No 

Forward pass by GPU: 1.39s 
Feature encoding by CPU: 0.03s 
Image matching by CPU: 23ms 

GPU: NVIDIA TITAN X 
CPU: Unknown (4.00GHz) 

RSF  
[30] 98kB No 

Forward pass by GPU: 0.26s 
Feature encoding by CPU: 0.48s 
Image matching by CPU: 24.3ms 

GPU: NVIDIA GT940M 
CPU: Intel i5-5200U 

SSM  
[31] 175kB No 

Forward pass by GPU: 0.18s 
Feature encoding by CPU: 0.22s 
Image matching by CPU: 26.7ms 

GPU: NVIDIA RTX2080Ti 
CPU: Intel i7-7700 

6. Conclusion 
This paper proposes a simple yet effective four-step method that can obtain lower 

-dimensional representations with impressive results by using fewer computing resources. 
Experimental evaluations demonstrate that our method reduces the feature representation 
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space of place images by more than 75% with negligible loss in recognition precision. Also, it 
achieves a fast matching speed, and the similarity calculation between two images takes only 
about 0.03 seconds on an old laptop. 

Although our method greatly reduces the image representation space, the process of image 
feature processing in our method is time-consuming, especially the process of region selection 
and landmark matching. Therefore, our future work will investigate salient feature map 
selection to reduce CNN features in two dimensions. 
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