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Convolutional Neural Network-Based 
Automatic Segmentation of Substantia 
Nigra on Nigrosome and Neuromelanin 
Sensitive MR Images

INTRODUCTION

Parkinson's disease is the second most common neuro-degenerative disease (1). The 
cause of Parkinson’s disease is known as degeneration of dopaminergic neuron in the 
substantia nigra pars compacta (SNpc) (2). Recently, neuromelanin and nigrosome 
imaging techniques (3, 4) have been developed as indirect monitoring tools for 
determining dopamine activities in the substantia nigra (5). Neuromelanin imaging 
is obtained using strong T1-weighting and magnetization transfer (MT) preparation. 
Nigrosome imaging is obtained using paramagnetic susceptibility weighting. Although 
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Recently, neuromelanin and nigrosome imaging techniques have been developed to 
evaluate the substantia nigra in Parkinson’s disease. Previous studies have shown 
potential benefits of quantitative analysis of neuromelanin and nigrosome images in 
the substantia nigra, although visual assessments have been performed to evaluate 
structures in most studies. In this study, we investigate the potential of using deep 
learning based automatic region segmentation techniques for quantitative analysis 
of the substantia nigra. The deep convolutional neural network was trained to 
automatically segment substantia nigra regions on 3D nigrosome and neuromelanin 
sensitive MR images obtained from 30 subjects. With a 5-fold cross-validation, 
the mean calculated dice similarity coefficient between manual and deep learning 
was 0.70 ± 0.11. Although calculated dice similarity coefficients were relatively low 
due to empirically drawn margins, selected slices were overlapped for more than 
two slices of all subjects. Our results demonstrate that deep convolutional neural 
network-based method could provide reliable localization of substantia nigra regions 
on neuromelanin and nigrosome sensitive MR images.

Keywords: Parkinson’s disease; Substantia nigra; Deep learning; Image segmentation; 
Nigrosome, neuromelanin

pISSN 2384-1095
eISSN 2384-1109

Junghwa Kang1, Hyeonha Kim2, Eunjin Kim3, Eunbi Kim1, Hyebin Lee4, 
Na-young Shin4, Yoonho Nam1

1Division of Biomedical Engineering, Hankuk University of Foreign Studies, Yong-in, Korea
2Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University, Suwon, 
Korea
3Department of Electrical and Computer Engineering, Sungkyunkwan University, Suwon, Korea
4Department of Radiology, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of 
Korea, Seoul, Korea 

http://crossmark.crossref.org/dialog/?doi=10.13104/imri.2021.25.3.156&domain=pdf&date_stamp=2021-09-23


157www.i-mri.org

https://doi.org/10.13104/imri.2021.25.3.156

visual assessments have been mainly performed to evaluate 
their structures, recent studies have shown that quantitative 
analysis of neuromelanin and nigrosome in the substantia 
nigra (6) could be helpful in various clinical applications. 

However, manual delineation of the substantia nigra 
regions is difficult and time-consuming due to the 
substantia nigra’s tiny size on MR images. In addition, 
simple approaches such as intensity-based thresholding 
are not appropriate due to inhomogeneous bias fields of 
MR images and the relatively low signal-to-noise ratio 
of substantia nigra imaging. In this context, automatic 
segmentation tools could provide efficient and objective 
quantitative analysis for substantia nigra regions. Recently, 
deep learning methods have been developed and validated 
for medical image segmentation (7-9). These methods have 
shown superior performances to other methods. 

The objective of this study was to investigate the potential 
of convolutional neural network-based automatic region 
segmentation techniques for quantitative analysis of the 
substantia nigra. For training and validation, neuromelanin-
sensitive and nigrosome-sensitive MR images were used. 
These images were generated from 3D multi-echo gradient 
echo acquisition.

MATERIALS AND METHODS

MR Image Acquisition
A recently proposed imaging technique (10) that could 

simultaneously obtain both neuromelanin and nigrosome 
contrasts for the substantia nigra was utilized in this study. 
To obtain these contrasts, MT pulses and flow saturation 
pulses were added to multi-echo 3D gradient sequence. 
Institutional review board approved 30 subjects were 
scanned* on a clinical 3T MRI with following multi-echo 3D 
gradient echo protocol: MT pulse (off-resonance = 860 Hz), 
regional saturation pulse (inferior to the imaging slab), TR 
= 80 ms, number of echoes = 5, TE = 4.9, 13.5, 22.2, 30.9, 
39.6 ms, flip angle = 20, voxel size = 0.75 × 0.75 × 1.5 mm3, 
bandwidth = 144 Hz/px, number of slices = 32, acceleration 
factor = 2, and total scan time = 5 min. From obtained five 
echo complex data (Fig. 1a), neuromelanin-sensitive image, 
nigrosome-sensitive image, and quantitative susceptibility 
map were reconstructed (Fig. 1b, 1c). 

Manual Segmentation of the Substantia Nigra
Ground truth regions for the substantia nigra were 

manually drawn by a neuroradiologist to train a deep 

learning based segmentation model. A previous study has 
suggested that three consecutive slices below the red 
nucleus are a good indication for diagnosing Parkinson’s 
disease (11).  Therefore, three consecutive slices inferior to 
the red nucleus were chosen for manual segmentations. 
In this step, a margin was drawn to sufficiently cover 
substantia nigra structures as shown in Figure 2a. 

Automatic Segmentation Model
Our input data for the deep learning model were the 

first three echo magnitude 3D images obtained from 
each subject. Label data for substantia nigra regions were 
manually drawn by a neuroradiologist. Using these 3D 
input and label data, we trained the V-Net (12) architecture 
based on a fully convolutional neural network with 3D 
kernels. In this study, the depth of V-Net was 4 and 3 × 3 
× 3 3D convolution kernels were used for all convolutional 
layers. The whole process of the automatic segmentation 
model is shown in Figure 3. Dice loss coefficient is effective 
for the classification of imbalanced class (13). Thus, we 
used dice loss coefficient as a loss function in this study. 
Note that the volume of the substantia nigra regions is very 
small compared to the volume of the entire image. Due 
to limited number of subjects, we performed various data 
augmentation processes such as cropping randomly, flipping 
left and right side over, and generating random noises 
to reduce the probability of over-fitting. As an output of 
the deep learning model, we generated a binary mask for 
substantia nigra regions. For the output of the automatic 
segmentation model, we added two refinement steps. First, 
we calculated the center of mass based on results to split 
left and right sides (Fig. 4b). Second, to eliminate remaining 
false-positive regions, we labeled connected components by 
26-neighborhood and removed isolated small regions (Fig. 
4a). These refinement steps were also implemented to be 
automatically performed. The model was configured to train 
our input data with batch size 2 over 128 epochs. It was 
trained and validated using PyTorch on a system equipped 
with a single graphical processing unit (NVIDIA K80).

Performance Evaluation
To demonstrate the utility of segmented regions of 

neuromelanin and nigrosome, quantitative values were 
calculated and compared using two region of interests 
of the left and right substantia nigra shown in Figure 
2b. Neuromelanin volume ratios were calculated from 
neuromelanin sensitive image. Mean susceptibility values 
were calculated from quantitative susceptibility mapping 
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(Fig. 4c, 4d). Due to an insufficient number of included 
subjects in this study, a 5-fold cross-validation was 
performed. For each model, 24 subjects were used for 
training and 6 subjects were used for validation. The dice 
similarity coefficient can be used to evaluate the accuracy 
of segmentation. It describes the degree of similarity by 
measuring the overlap of two contour lines. For validation 
sets from the 5-fold cross-validation, dice similarity 
coefficients were calculated from segmentation results. 
Using manual segmentation and deep learning results, 
neuromelanin volume ratios were also calculated from the 
first echo magnitude. The ratio was calculated with the 
following equation:  

Neuromelanin Volume Ratio = ( Pixels>mean+3SD )Pixels>mean+1SD
	 [1]

Mean susceptibility values were also calculated from the 
reconstructed quantitative susceptibility map.

RESULTS

The training was performed on a single graphical 
processing unit. The training time was approximately 2.2 
hours for five different model training. For the 5-fold cross-
validation, the calculated dice similarity coefficient value 
between manual and deep learning segmentations was 
0.70 ± 0.11. Figure 5 visualizes segmentation results of 
manual and deep learning. Dice similarity coefficients were 
relatively low due to empirically drawn margins. However, 
selected slices were overlapped for more than two slices of 
all subjects. Figure 6a and 6b are representative examples 
of relatively low dice coefficient cases. 

Fig. 1. Representative MR images of our protocol. (a) Acquired five-echo magnitude and phase. Reconstructed neuromelanin 
(b) and nigrosome (c) images.

a

b c
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Figure 7a and 7b show calculated quantitative values 
from manual segmentations and deep-learning based 
segmentations. For both neuromelanin and nigrosome 
analysis, these two measurements were highly correlated. 
For the estimated neuromelanin volume ratio, the calculated 
correlation coefficient between the two segmentations was 
0.75 (Fig. 7a). For mean susceptibility values, the correlation 
coefficient between the two segmentations was 0.94 (Fig. 

7b).

DISCUSSION

In this study, we trained a convolutional neural network 
to automatically segment substantia nigra regions on 
neuromelanin and nigrosome sensitive MR images. To 

Fig. 2. Three slices below inferior parts of the red nucleus were chosen and regions including the substantia nigra with 
sufficient margins were manually drawn (a). Green and red areas represent right and left sides of the substantia nigra, 
respectively. Inferior parts of red nucleus (yellow arrows) were described on QSM images (b).

a

b

Fig. 3. Input and output of a 3D convolutional neural network-based automatic segmentation model.
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Fig. 4. Refinement steps for the network output (Step 1: False positive voxels were removed; Step 2: Left and right sides 
were divided). Representative segmentation results (a) before and (b) after refinement steps. (c) and (d) are overlapping 
results on neuromelanin sensitive image and quantitative susceptibility map, respectively.

a c

b d

Fig. 5. Comparison of manual and deep learning results (Case of high DSC): (a) manual delineations, and (b) deep learning 
segmentations.

a

b
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Fig. 6. Comparison of manual and deep learning results (Case of relatively low DSC): (a) manual delineations, and (b) deep 
learning results. 

a

b

Fig. 7. Calculated quantitative values from manual segmentations and deep-learning based segmentations for (a) 
neuromelanin volume ratio (calculated correlation: 0.75) and (b) mean susceptibility value (calculated correlation: 0.94).

a b
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do this, we utilized a fully convolutional neural network 
architecture (V-Net) with 3D convolutional kernels. Cropped 
multi-contrast 3D images were used as input data and 
manually drawn masks were used as output data. Results 
demonstrated that the trained model could provide reliable 
localizations of substantia nigra regions on 3D MR images 
in validation data. Quantitative analysis of neuromelanin 
volume ratios and susceptibility values using segmented 
results demonstrated potential benefits of the trained 
model. 

Calculated dice similarity coefficients between manual 
segmentation and network outputs seemed to be 
relatively low compared to those of other medical image 
segmentation studies. This is related to the fact that the 
substantia nigra is a very tiny structure and the boundary 
of the structure on the MR image is not well-delineated 
due to limited imaging resolution and signal-to-noise 
ratio. In this study, we used 0.5 as the thresholding value 
for the substantia region as the network output. However, 
by adjusting the thresholding value, we can easily reduce 
or increase the margin of segmented results. Considering 
that it is difficult to obtain a consistent delineation even 
if a manual drawing is performed by a radiologist, reliable 
localization is meaningful for applications of nigrosome-
sensitive and neuromelanin-sensitive MRI.  

Segmentation results provided reliable quantitative 
analysis results for both neuromelanin volume ratios on 
neuromelanin-sensitive images and susceptibility values on 
quantitative susceptibility maps.  This showed the potential 
of automated quantitative analysis for Parkinson’s disease 
patients in clinical practice. It can also reduce processing 
time to test data using a network model. Additionally, the 
pipeline of our quantitative analysis process does not need 
manual interventions. Although we demonstrated that 
relatively low dice similarity coefficients dit not significantly 
affect results of quantitative analysis, improved and 
consistent segmentation results should be demonstrated for 
actual distributions of clinical data. Therefore, to utilize this 
method in clinical practice, further investigations with more 
data are necessary.

In conclusion, this study demonstrated the potential 
of convolutional neural network-based automatic region 
segmentation techniques for quantitative analysis of the 
substantia nigra on neuromelanin and nigrosome images. 
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