• Title/Summary/Keyword: Image Database

Search Result 1,274, Processing Time 0.032 seconds

Progressive Region of Interest Coding Using the Embedded Coding Technifque (임베디드 부호화 기법을 이용한 점진적 관심영역 부호화)

  • 최호중;강의성;다나카도시히사;고성제
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.25 no.1B
    • /
    • pp.148-155
    • /
    • 2000
  • In image coding applications such as web browsing and image database searching, it is very useful to quickly view a small portion of the image with higher quality. Region of interest (ROI) coding technique provides the capability to reconstruct the ROI in advance of decompressing the rest of the image, with a smaller number of transmitted bits compared to the case where the entire image is treated with the same priority. In this paper, a progressive ROI coding method using the enbedded coder is presented, and an efficient transmission method for the ROI information. Experimental results show that the proposed progressive ROI coding technique can be effectively used for image coding applications such as web browsing and image database searching system.

  • PDF

No-reference Sharpness Index for Scanning Electron Microscopy Images Based on Dark Channel Prior

  • Li, Qiaoyue;Li, Leida;Lu, Zhaolin;Zhou, Yu;Zhu, Hancheng
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.5
    • /
    • pp.2529-2543
    • /
    • 2019
  • Scanning electron microscopy (SEM) image can link with the microscopic world through reflecting interaction between electrons and materials. The SEM images are easily subject to blurring distortions during the imaging process. Inspired by the fact that dark channel prior captures the changes to blurred SEM images caused by the blur process, we propose a method to evaluate the SEM images sharpness based on the dark channel prior. A SEM image database is first established with mean opinion score collected as ground truth. For the quality assessment of the SEM image, the dark channel map is generated. Since blurring is typically characterized by the spread of edge, edge of dark channel map is extracted. Then noise is removed by an edge-preserving filter. Finally, the maximum gradient and the average gradient of image are combined to generate the final sharpness score. The experimental results on the SEM blurred image database show that the proposed algorithm outperforms both the existing state-of-the-art image sharpness metrics and the general-purpose no-reference quality metrics.

APPLICATION AND CROSS-VALIDATION OF SPATIAL LOGISTIC MULTIPLE REGRESSION FOR LANDSLIDE SUSCEPTIBILITY ANALYSIS

  • LEE SARO
    • Proceedings of the KSRS Conference
    • /
    • 2004.10a
    • /
    • pp.302-305
    • /
    • 2004
  • The aim of this study is to apply and crossvalidate a spatial logistic multiple-regression model at Boun, Korea, using a Geographic Information System (GIS). Landslide locations in the Boun area were identified by interpretation of aerial photographs and field surveys. Maps of the topography, soil type, forest cover, geology, and land-use were constructed from a spatial database. The factors that influence landslide occurrence, such as slope, aspect, and curvature of topography, were calculated from the topographic database. Texture, material, drainage, and effective soil thickness were extracted from the soil database, and type, diameter, and density of forest were extracted from the forest database. Lithology was extracted from the geological database and land-use was classified from the Landsat TM image satellite image. Landslide susceptibility was analyzed using landslide-occurrence factors by logistic multiple-regression methods. For validation and cross-validation, the result of the analysis was applied both to the study area, Boun, and another area, Youngin, Korea. The validation and cross-validation results showed satisfactory agreement between the susceptibility map and the existing data with respect to landslide locations. The GIS was used to analyze the vast amount of data efficiently, and statistical programs were used to maintain specificity and accuracy.

  • PDF

Real-time emotion analysis service with big data-based user face recognition (빅데이터 기반 사용자 얼굴인식을 통한 실시간 감성분석 서비스)

  • Kim, Jung-Ah;Park, Roy C.;Hwang, Gi-Hyun
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.18 no.2
    • /
    • pp.49-54
    • /
    • 2017
  • In this paper, we use face database to detect human emotion in real time. Although human emotions are defined globally, real emotional perception comes from the subjective thoughts of the judging person. Therefore, judging human emotions using computer image processing technology requires high technology. In order to recognize the emotion, basically the human face must be detected accurately and the emotion should be recognized based on the detected face. In this paper, based on the Cohn-Kanade Database, one of the face databases, faces are detected by combining the detected faces with the database.

  • PDF

Design of Smart Platform based on Image Recognition for Lifelog (라이프로그용 영상인식 기반의 스마트 플랫폼 설계)

  • Choi, Youngho
    • Journal of Internet Computing and Services
    • /
    • v.18 no.1
    • /
    • pp.51-55
    • /
    • 2017
  • In this paper, we designed a LBS-based smart platform for Lifelog service that can utilize the other's lifelog information. The conventional Lifelog service means that the system records the daily activities of the smart device user so the user can retrieve the early-recorded information later. The proposed Lifelog service platform uses the GPS/UFID location information and the various information extracted from the image as the lifelog data. Further, the proposed Lifelog platform using DB can provide the user with the Lifelog data recorded by the other service user. The system usually provide the other's Lifelog data within the 500m distance from the user and the range of distance can be adjustable. The proposed smart platform based on image recognition for Lifelog can acquire the image from the smart device directly and perform the various image recognition processing to produce the useful image attributes. And it can store the location information, image data, image attributes and the relevant web informations on the database that can be retrieved by the other use's request. The attributes stored and managed in the image information database consist of the followings: Object ID, the image type, the capture time and the image GPS coordinates. The image type attribute has the following values: the mountain, the sea, the street, the front of building, the inside of building and the portrait. The captured image can be classified into the above image type by the pattern matching image processing techniques and the user's direct selection as well. In case of the portrait-attribute, we can choose the multiple sub-attribute values from the shirt, pant, dress and accessory sub-attributes. Managing the Lifelog data in the database, the system can provide the user with the useful additional services like a path finding to the location of the other service user's Lifelog data and information.

Implementation of Intelligent Medical Image Retrieval System HIPS (지능형 의료영상검색시스템 HIPS 구현)

  • Kim, Jong-Min;Ryu, Gab-Sang
    • Journal of Internet of Things and Convergence
    • /
    • v.2 no.4
    • /
    • pp.15-20
    • /
    • 2016
  • This paper describes the construction of knowledge data retrieval management system based on medical image CT. The developed system is aimed to improve the efficiency of the hospital by reading the medical images using the intelligent retrieval technology and diagnosing the patient 's disease name. In this study, the medical image DICOM file of PACS is read, the image is processed, and feature values are extracted and stored in the database. We have implemented a system that retrieves similarity by comparing new CT images required for medical treatment with the feature values of other CTs stored in the database. After converting 100 CT dicom provided for academic research into JPEG files, Code Book Library was constructed using SIFT, CS-LBP and K-Mean Clustering algorithms. Through the database optimization, the similarity of the new CT image to the existing data is searched and the result is confirmed, so that it can be utilized for the diagnosis and diagnosis of the patient.

Implementation of Content Based Color Image Retrieval System using Wavelet Transformation Method (웨블릿 변환기법을 이용한 내용기반 컬러영상 검색시스템 구현)

  • 송석진;이희봉;김효성;남기곤
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.40 no.1
    • /
    • pp.20-27
    • /
    • 2003
  • In this paper, we implemented a content-based image retrieval system that user can choose a wanted query region of object and retrieve similar object from image database. Query image is induced to wavelet transformation after divided into hue components and gray components that hue features is extracted through color autocorrelogram and dispersion in hue components. Texture feature is extracted through autocorrelogram and GLCM in gray components also. Using features of two components, retrieval is processed to compare each similarity with database image. In here, weight value is applied to each similarity value. We make up for each defect by deriving features from two components beside one that elevations of recall and precision are verified in experiment results. Moreover, retrieval efficiency is improved by weight value. And various features of database images are indexed automatically in feature library that make possible to rapid image retrieval.

The Content-based Image Retrieval by Using Variable Block Size and Block Matching Algorithm (가변 블록 크기와 블록 매칭 알고리즘의 조합에 의한 내용기반 화상 검색)

  • Kang, Hyun-Inn;Baek, Kwang-Ryul
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.35S no.8
    • /
    • pp.47-54
    • /
    • 1998
  • With the increasing popularity of the use of large-volume image database in various application, it becomes imperative to build an efficient and fast retrieval system to browse through the entire database. We present a new method for a content-based image retrieval by using a variable block size and block matching algorithm. Proposed approach is reflecting image features that exploit visual cues such as color and space allocation of image and is getting the fast retrieval time by automatical convergence of retrieval times which adapt to wanting similarity value. We have implemented this technique and tested it for a database of approximately 150 images. The test shows that a 1.9 times fast retrieval time compare to J & V algorithm at the image retrieval efficiency 0.65 and that a 1.83 times fast retrieval time compare to predefined fixed block size.

  • PDF

Image Retrieval Scheme using Spatial Similarity and Annotation (공간 유사도와 주석을 이용한 이미지 검색 기법)

  • 이수철;황인준
    • Journal of KIISE:Databases
    • /
    • v.30 no.2
    • /
    • pp.134-144
    • /
    • 2003
  • Spatial relationships among objects are one of the important ingredients for expressing constraints of an image in image or multimedia retrieval systems. In this paper, we propose a unified image retrieval scheme using spatial relationships among objects and their features. The proposed scheme is especially effective in computing similarity between query image and images in the database. Also, objects and their spatial relationships are captured and annotated in XML. It could give better precision and flexibility in retrieving images from database. Finally, we have implemented a prototype system for retrieving images based on proposed technique and showed some of the experiment results.

Image Analysis Fuzzy System

  • Abdelwahed Motwakel;Adnan Shaout;Anwer Mustafa Hilal;Manar Ahmed Hamza
    • International Journal of Computer Science & Network Security
    • /
    • v.24 no.1
    • /
    • pp.163-177
    • /
    • 2024
  • The fingerprint image quality relies on the clearness of separated ridges by valleys and the uniformity of the separation. The condition of skin still dominate the overall quality of the fingerprint. However, the identification performance of such system is very sensitive to the quality of the captured fingerprint image. Fingerprint image quality analysis and enhancement are useful in improving the performance of fingerprint identification systems. A fuzzy technique is introduced in this paper for both fingerprint image quality analysis and enhancement. First, the quality analysis is performed by extracting four features from a fingerprint image which are the local clarity score (LCS), global clarity score (GCS), ridge_valley thickness ratio (RVTR), and the Global Contrast Factor (GCF). A fuzzy logic technique that uses Mamdani fuzzy rule model is designed. The fuzzy inference system is able to analyse and determinate the fingerprint image type (oily, dry or neutral) based on the extracted feature values and the fuzzy inference rules. The percentages of the test fuzzy inference system for each type is as follow: For dry fingerprint the percentage is 81.33, for oily the percentage is 54.75, and for neutral the percentage is 68.48. Secondly, a fuzzy morphology is applied to enhance the dry and oily fingerprint images. The fuzzy morphology method improves the quality of a fingerprint image, thus improving the performance of the fingerprint identification system significantly. All experimental work which was done for both quality analysis and image enhancement was done using the DB_ITS_2009 database which is a private database collected by the department of electrical engineering, institute of technology Sepuluh Nopember Surabaya, Indonesia. The performance evaluation was done using the Feature Similarity index (FSIM). Where the FSIM is an image quality assessment (IQA) metric, which uses computational models to measure the image quality consistently with subjective evaluations. The new proposed system outperformed the classical system by 900% for the dry fingerprint images and 14% for the oily fingerprint images.