• Title/Summary/Keyword: If-then Rule

Search Result 214, Processing Time 0.023 seconds

Design of the Combined Direct and Indirect Adaptive Neural Controller Using Fuzzy Rule (퍼지규칙에 의한 직.간접 혼합 신경망 적응제어시스템의 설계)

  • 이순영;장순용
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.4 no.3
    • /
    • pp.603-610
    • /
    • 2000
  • In this paper, the direct and indirect adaptive controller are combined based on the Lyapunov synthesis approach. The Proposed controller is constructed from RBF Neural Network and weighting parameters are adjusted on-line according to some adaptation law. In this scheme, fuzzy IF-THEN rules are used to decide the combined weighting factor. In the results, proposed controller has the main advantages of both the direct adaptive controller and the indirect adaptive controller. The effectiveness of the proposed control scheme is demonstrated through simulation results of control for one-link rigid robotics manipulator.

  • PDF

Design of Combined Direct/Indirect Adaptive Neural Control System using Fuzzy Rule (퍼지규칙에 의한 직/간접 혼합 신경망 적응제어시스템의 설계)

  • Jang, Soon-Ryong;Choi, Jae-Seok;Lee, Soon-Young
    • Proceedings of the KIEE Conference
    • /
    • 1999.07b
    • /
    • pp.724-727
    • /
    • 1999
  • In this paper, the direct and indirect neural adaptive controller are combined based on the Lyapunov synthesis approach. The proposed adaptive controller is constructed from RBF neural network and a set of fuzzy IF-THEN rules. And the weighting parameters are adjusted on-line according to some adaptation law for the purpose of controlling the plant to track a given trajectory. In this scheme, fuzzy IF-THEN rules are used to decide the combined weighting factor. It is shown that all the signals in the closed-loop system are uniformly bounded under mild assumptions. The effectiveness of the proposed control scheme is demonstrated through the control of one-link rigid robotics manipulator.

  • PDF

Nonlinear Approximation in High-Dimensional Spaces Using Tree-Structured Intelligent Systems (수목구조 지능시스템을 이용한 고차원 공간 위에서의 비선형 근사)

  • 길준민;정창호;강성훈;박주영;박대희
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.6 no.3
    • /
    • pp.25-36
    • /
    • 1996
  • Conventional radial-basis-function networks and fuzzy systems have serious problems in dealing with the non1inea:r approximations on high-dimensional spaces due to the explosive increase of the number of hidden nodes or fuzzy IF-THEN rules. In order to avoid such problems, this paper proposes a tree-structured intelligent system in which semi-local basis functions form its basic elements, and develops a training algorithm for the proposed system based on the modified genetic algorithm and LMS rule. Theoretical analysis is performed on the approximation capability of the proposed system, together with experimental studies which demonstrate the effectiveness of the developed methodology.

  • PDF

Inventory Control Policies for a Hospital Blood Bank: A Simulation and Regression Approach (병원의 혈액 재고관리를 위한 평가 모형 : 시뮬레이션 및 회귀분석 방법)

  • Suh, Jeong-Dae
    • IE interfaces
    • /
    • v.10 no.1
    • /
    • pp.119-134
    • /
    • 1997
  • The management of blood inventory is very important within the medical care system. The efficient management of blood supplies and demands for transfusions is of great economic and social importance to both hospitals and patients. For any blood type, there is a complex interaction among the optimal inventory level, daily demand level, daily supply level, transfusion to crossmatch ratio, crossmatch release period, issuing policy and the age of arriving units that determine the shortage and outdate rate. In this paper, we develop an efficient decision rule for blood inventory management in a hospital blood bank which can support efficient hospital blood inventory management using simulation. The primary use of the efficient decision rule will be to establish minimum cost function which consists of inventory levels, period in inventory, outdate and shortage rate for whole blood and various component inventories for a hospital blood bank or a transfusion service. If the administrator compute the mean daily demand for each blood type, the mean daily supply for each blood type, the length of the crossmatch release period and the average transfusion to crossmatch ratio, then it is possible to apply the efficient decision rule to compute the optimal inventory level, inventory period, outdate and shortage rate. This rule can also be used as a decision support system that allows the blood bank administrator to do sensitivity analysis related to controllable blood inventory parameters.

  • PDF

A Study on Reasoning and Learning of Fuzzy Rules Using Neural Networks (신경회로망을 이용한 퍼지룰의 추론과 학습에 관한 연구)

  • 이계호;임영철;김이곤;조경영
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.18 no.2
    • /
    • pp.231-238
    • /
    • 1993
  • A rules of fuzzy control is to represent an expert‘s and engineer‘s ambiguous control knowledge of system with some lingustic rules. This rule is very difficult to represent perfectly because expert‘s knowledge is not precise and the rule is not perfect. We propose the fuzzy reasoning and learning to upgrade precision of imperfect rules successively after system running. In the proposed method, the precision of the backward part of a fuzzy rule is improved by back propagation learning method. Also, the method reasons the compatibility degree of the forward part of fuzzy rule by associative memory method. This method this is successfully applied to design auto-parking fuzzy controller in which expert‘s technology and knowledge are required in the limited area.

  • PDF

Interval-Valued Fuzzy Set Backward Reasoning Using Fuzzy Petri Nets (퍼지 페트리네트를 이용한 구간값 퍼지 집합 후진추론)

  • 조상엽;김기석
    • Journal of Korea Multimedia Society
    • /
    • v.7 no.4
    • /
    • pp.559-566
    • /
    • 2004
  • In general, the certainty factors of the fuzzy production rules and the certainty factors of fuzzy propositions appearing in the rules are represented by real values between zero and one. If it can allow the certainty factors of the fuzzy production rules and the certainty factors of fuzzy propositions to be represented by interval -valued fuzzy sets, then it can allow the reasoning of rule-based systems to perform fuzzy reasoning in more flexible manner. This paper presents fuzzy Petri nets and proposes an interval-valued fuzzy backward reasoning algorithm for rule-based systems based on fuzzy Petri nets Fuzzy Petri nets model the fuzzy production rules in the knowledge base of a rule-based system, where the certainty factors of the fuzzy propositions appearing in the fuzzy production rules and the certainty factors of the rules are represented by interval-valued fuzzy sets. The algorithm we proposed generates the backward reasoning path from the goal node to the initial nodes and then evaluates the certainty factor of the goal node. The proposed interval-valued fuzzy backward reasoning algorithm can allow the rule-based systems to perform fuzzy backward reasoning in a more flexible and human-like manner.

  • PDF

Optimization of Fuzzy Inference Systems Based on Data Information Granulation (데이터 정보입자 기반 퍼지 추론 시스템의 최적화)

  • 오성권;박건준;이동윤
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.53 no.6
    • /
    • pp.415-424
    • /
    • 2004
  • In this paper, we introduce and investigate a new category of rule-based fuzzy inference system based on Information Granulation(IG). The proposed rule-based fuzzy modeling implements system structure and parameter identification in the efficient form of “If..., then...” statements, and exploits the theory of system optimization and fuzzy implication rules. The form of the fuzzy rules comes with three types of fuzzy inferences: a simplified one that involves conclusions that are fixed numeric values, a linear one where the conclusion part is viewed as a linear function of inputs, and a regression polynomial one as the extended type of the linear one. By the nature of the rule-based fuzzy systems, these fuzzy models are geared toward capturing relationships between information granules. The form of the information granules themselves becomes an important design features of the fuzzy model. Information granulation with the aid of HCM(Hard C-Means) clustering algorithm hell)s determine the initial parameters of rule-based fuzzy model such as the initial apexes of the membership functions and the initial values of polynomial function being used in the Premise and consequence Part of the fuzzy rules. And then the initial Parameters are tuned (adjusted) effectively with the aid of the improved complex method(ICM) and the standard least square method(LSM). In the sequel, the ICM and LSM lead to fine-tuning of the parameters of premise membership functions and consequent polynomial functions in the rules of fuzzy model. An aggregate objective function with a weighting factor is proposed in order to achieve a balance between performance of the fuzzy model. Numerical examples are included to evaluate the performance of the proposed model. They are also contrasted with the performance of the fuzzy models existing in the literature.

A study for learning neural-network using internal representation (은닉층에 대한 의미부여를 통한 학습에 대한 연구)

  • 기세훈;안상철;권욱현
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1993.10a
    • /
    • pp.842-846
    • /
    • 1993
  • Because of complexity, neural network is difficult to learn. So if internal representation[1] can be performed successfully, it is possible to use perceptron learning rule. As a result, learning is easier. Therefore the method of internal representations applied to the "XOR" problem, and the "spirals" problem. And then using the above results, the structure of neural network for computing is embodied.mputing is embodied.

  • PDF

Tree-Structured Fuzzy System (트리구조 퍼지시스템)

  • 정창호;강성훈;박주영;박대희
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1996.10a
    • /
    • pp.154-157
    • /
    • 1996
  • Conventional fuzzy systems have serious problems in dealing with the nonlinear approximations on high-dimensional spaces due to the explosive increase of the number of fuzzy IF-THEN rules. In order to avoid such problems, this paper proposes a tree-structured fuzzy system in which semi-local basis functions form its basic elements, and develops a training algorithm for the proposed system based on the evolution program and LMS rule. The experimental studies demonstrate the effectiveness of the developed methodology.

  • PDF

Neural Network Refinement using Hidden Knowledge Extraction (은닉지식 추출을 이용한 신경망회로망 정제)

  • Kim, Hyeon-Cheol
    • Journal of KIISE:Software and Applications
    • /
    • v.27 no.11
    • /
    • pp.1082-1087
    • /
    • 2000
  • 신경회로망 구조의 정제(精製)는 회로망의 일반화능력이나 효율성의 관점에서 중요한 문제이다. 본 논문에서는 feed-forward neural networks로부터 은닉지식을 추출하는 방법을 사용하여 네트워크 재구성을 통한 정제방법을 제안한다. 먼저, 효율적인 if-then rule 추출방법을 제시하고 그 추출된 룰들을 사용하여 룰기반 네트워크로 변환하는 과정을 보여준다. 생성된 룰기반 네트워크 fully connected network에 비하여 상당히 축소된 연결 복잡도를 가지게 되며 일반적으로 더 우수한 일반화능력을 가지게 된다. 본 연구는 도메인 지식이 없이 데이타만 사용하여 어떻게 정제된 룰기반 신경망회로를 생성하고 있는가를 보여준다. 도메인 데이타들에 대한 실험결과도 제시하였다.

  • PDF