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(Neural Network Refinement using Hidden Knowledge Extraction)
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Abstract How to refine a neural network structure has been an important issue in designing a
feedforward network. In this paper, we propose a new approach to refine a feedforward neural network
using knowledge extraction from the network.

An efficient method for extracting hidden rules of a feedforward network is presented. The
extracted rules are mapped into a rule-based neural network which represents the knowledge of the
original neural network. The rule-based network explains its behaviour by internal rules and often
provides better generalization performance. Through this process, a cumbersome fully connected neural
network can be transformed into an efficient rule-based connectionist network of much reduced size.
The main contribution is that we show how the refined rule-based network is generated from data
by neural adaptation without resource to any prior domain knowledge. Empirical results are shown.

1. Introduction

Refinement of neural network  connection
structure is a strategy for improving its genera-
lization and efficiency. Fully-connected networks
with arbitrary number of hidden nodes often suffer
over—fitting problem caused by overtraining and
unbalance training déta set which degrades the
generalization capability of standard multi-layered
networks. There has been studies to find the right
complexity of the network such as skeletonization
ete.

pruning[1], weight decay[2], gain decayl[3],

Those methods try to reduce the hidden layer size
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down to an optimal size.

Given any prior domain knowledge (or rules), we
can use the domain knowledge to determine the
structure of The
knowledge-based neural networks have been ‘shown

initial the neural network.
better network structures and thus better genera-
lization [4,5].

can not be constructed without prior

However, the knowledge—hased neural
network
domain knowledge (or rules) and thus, this network
has been used for domain knowledge refinement
system rather than network refinement system [6,
7.

In this paper, we propose a new approach to the
network refinement which involves rule extraction
from a fully—connected feed-forward neural network
and reconstruction of a rule-based neural network

using the extracted rules only (e, without any
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prior domain knowledge). An efficient algorithm to
extract hidden knowledge from a neural network is
presented. We show how this method is applied to
network refinement and the resulting network with
much reduced size often provides better generali-

zation performance.

2. Rule-Based Neural Networks

In rule-based connectionist networks (RBCN) [8,
91,
symbolic rules as shown in Figure 1 and thus, the

its connection topology is determined by
complexity of the network is determined by the
complexity of the rules used. The network con-
structed by the rules simulates a rule-based system
if it is not trained. After the network topology is
determined, weights are initialized properly accord-
ing to given knowledge. Depending on the type of
activation function chosen, different weight initi—
alization schemes are adopted. See, for example, the
KBCNN model [8] and the KBANN model [7,10].
In this
feed-forward backpropagation network architecture

paper, we adopt a multi-layered
whose topology is determined by if-then rules and

activation function is sigmoid.

RULES:

OUTPUT

If A and B, Then X
I AandC, Then Y
Il B and E, Then Z
Ir A and D and E, Then X

Conjunction

Fig. 1 An example of a rule-base dconnectionist
network [2].

3. Rule Extraction for Single Nodes

A rule generated from a neural network has the
form of ”if the premise, then the conclusion.” The
premise is composed of a number of positive and

negative attributes and so is the conclusion. In the
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basic form of a rule, the rule’s premise is limited
and the rule’s
attribute.

to a conjunction of attributes

conclusion is limited to a . single
However, the presence of multiple rules with :same
conclusion represents disjunction. A rule with. a
represented by

conjunction of conclusions is

multiple rules with same premise but different
conclusions. Quality of a rule is evaluated with a
few criteria. First of all, a rule should be valid.
The wvalidity condition for a rule is defined as
follows. Whenever the rule’s premise holds, so does
its conclusion in the presence of any combination
of the values of attributes not referenced bﬂ/ ‘tlie
rule[9].

or goodness of fit) and generality (simplicity).

Other criteria include accuracy (specificity

Accuracy is about how often the rule is classified
correctly. Generality is about how often the premise
of a rule occurs. It is also related to coverage of
the rule. As the rule gets simpler (i.e., shorter), it

covers more instances in the input domain.

Threshold:-l
w=3 2
v !
x1 x2 x3 x4 x5
Fig. 2 An individual node with five incoming

connection weights and a threshold.

Figure 2 gives an example to illustrate valid rule
generation. At each non-input unit of a trained
network, n incoming connection weights and a
threshold are given. Rule extraction at the unit
finds a set of incoming attribute combinations that
are valid and maximally-general (ie., size of each
combination is as small as possible). For example,
a combination (x1, x2) is a valid rule because its
total-input (.e., 3+4=7) is always greater than the
threshold (i.e, —I) regardless of the values of other
This

combination is converted into a- valid rule "If x1

incoming units such as x3 x and Xs.
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and x2, then y”. Another example is (not x3) which
is also wvalid.
Even is very simple,

though this procedure

search space is increases exponentially with the

number of incoming units. Given n  binary
attributes,  there  are 2= };L‘Oc ) possible
combinations. For each combination, its validity

testing adds another complexity 2" and thus,

3M(= Z}OZ ‘C" possible rules in the rule space.

There has been many other studies in extraction
of valid and general rules efficiently [4,11,12,13,14,
15]. The complexity for validity testing can be
reduced to O(1) by a simple method that tests only
[8,9,11].
Therefore rule search space is reduced to 2° from

one encode with the lowest total-input

3" Tree—based search uses a tree structure where
each node is one of the 2" combinations. At depth !
in the search tree, length (ie, the number of
attributes) of combinations is I The tree-based
search begins with a root node (e, length 0 or
the shortest length combination) to a leaf node (ie.,
length n or the Jongest length combination),
its wvalidity. If it finds

combination, it stops generating children nodes and

checking a valid rule
takes it as a rule with the following property: "if a
combination of a node is a valid rule, combinations
of its descendant nodes are eliminated from the
search tree space.”, which reduces search space.
For finding the best rule (ie., a valid combination
with the shortest length), the worst case O(2%)
occurs when the rule is a leaf node combination of
length [ Fu’s KTI[9,11] algorithm is an improved
tree search algorithm which reduces search space
and memory space heuristically, The KT algorithm
reduces the search space by dividing the n
incoming attributes into p positive and ¢ negative
attributes  (st. p+g=n).

separation derives from the fact that the complexity

The basic idea of the

of an exponential space is greater than the sum of
That 1s,
b<l and

approach reduces the

complexities  of its  sub-spaces.
2'2(a-x)"+(b-x)" where I>I, a<l,

a+b=1. Even though this

complexity in  most cases, the worst case

complexity remains same 027 if p=n (e, no
negative attributes).

We introduce a different search space structure
and computationally efficient heuristics in this
paper. The algorithm involves the following three
procedures:
@ Attribute
attribute, its contribution to a candidate rule is

Contribution  Scoring: For each

calculatecl.
@ Attribute
descending order according to their contribution

Sorting: Attributes are sorted in
scores.

@ Rule Searching: With the attributes sorted by
their contribution scores, valid and maximally
general rules are to be searched.

The contribution score of each attribute is
defined by the amount of total-input increase (or
added to a

attribute cases, the

decrease) when the attribute is

candidate rule. For hinary

contribution score of an attribute x; is defined as

lwil where the w, is the connection weight of x..
After the

attributes are sorted in descending order by their

contribution scores are calculated,

scores as follows! a;, @z, a3 .. an. Then we list the
combinations of length / in the following order.
(a, ... a), .(a;, ao.. an), .(ai, as.. ari),
o Qn141,..G) ()
At each depth / in the search tree, the number of

combinations is C} and they are listed from the

left to the right as defined in (1). For example, we
have 10 incoming attributes and they are sorted by
their contribution scores as follows: a1, az as .. an
Figure3 illustrates a search tree based on the
ordered attributes. At depth 3, the 120 (e, C¥)
combinations are listed in the following order: (aj,
az, @i=310),(a1, Q39, Q=j-1.10),(Qi=2 8,Cj=i+1), 9,0=(5+1).30).

Search begins level by level from root to leaf
node. This structure provides three useful
heuristics:

@D At each level [, the left-most node (the first
combination) holds the highest total-input and the
holds the lowest.

last one Therefore, it is
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al,a2,a3,ad,a5}
{al,a2,a3,24,a5,a6}

{a1,a2,a3,a4,26.a6,a7.a8,a8.a10}

Fig. 3 Rule search tree structure with ordered
attributes aj, ag, ... aio.
straightforward to find the best rule (e, ‘Valid
combination with the shortest length). It éhecks
only the first node at each depth until validity
condition is satisfied. If the first combination is not
V.‘:ﬂid, the other combinations at the depth are not
valid either and thus eliminated from the search
tree instantly. Therefore, finding the best rule costs

only O(n) worst case.

@ For finding more than one rule, for example, b
(b>1) best rules, search begins from the depth, d,
of the best rule found at ), eliminating the search
space in depth O through d-I1. At depth d, it tests
The

combination order at each depth provides another

validity of each node from left to right.
useful heuristic to reduce search complexity. For
let the d be 3 and the of
attributes, n, be 10. Then the number of possible

example, number

combinations is C¥=120. Consider a combination
R=(a,,as ag). Then, total-input of R is greater

than the ones of (ay,as a7),...(ay,as,ayp. If the
R is not valid, the ]g}ﬂlzzl combinations are not

valid either. In the same way, total-input of R is
greater than the ones of (a1, a3, @ > max,+1) émd
(@515 @ 2o i+1)» @ 2w, j+ ), €liminating 20 and
80 combinations, respectively. Therefore, if the R is
104
combinations from the search space instantly.

@ Another

not wvalid, this heuristic eliminates other

heuristic is from the tree—based
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search property described before. At depth [, if .a
combination is valid, its child combinations at depth
[+1 are eliminated from the search space because
they are subsumed to the parent.

The three heuristics presented above reduce
Contribution

procedure costs O(n) and sorting costs O( nlogn).

search space significantly. scoring
Rule searching procedure costs O(n) for finding one

best rule and O(2’) worst case for b rules.

4. Empirical Results

Three data sets from public domains were used
in experiments: promoter, hepatitis and iris. The
experimental procedure is shown in Figure 4. We
compared the performance of the trained standard
network and the trained RBCN; the latter
derived from the former by rule extraction,

was'
as
described. Generalization capability was evaluated
by cross-validation: Each data set is divided into

two independent subsets, for training and testing,

respectively.
Standard Trained
Neural »  Standard > Eﬁéﬁz;ed
Network | Train | Network | Extract .
rules Build
rule-based
¥ network
Trained Rule-based
Rule-based (« NElW(‘)l’k
Network Train

Fig. 4 The experimental procedure

The promoter domain has 106 instances. Each
instance consists of a DNA nucleotide string of
four  base types: Al(adenine), G(guanine),
Clcytosine), and T(thymine). Each instance string
involves 57 sequential nucleotides. An instance is a
positive instance if the promoter region is present
in the string; else it is a negative instance. There
are 53 positive and 53 negative instances. In the
instances, each

Hepatitis domain, there are 155

described by 19 features: six continuous features
and thirteen’ nominal features. The Fisher's iris
data set contains 3 classes with 50 instances . each,

and each class refers to a type of flower, the iris.
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One class is linearly separable from the other two
which are not linearly separable from each other.
Each instance in the data set is described by four
continuous features. For the experiments here, each
continuous feature is discretized to three interval
attributes, resulting in a total twelve binary input
attributes.

Table 1 shows each domain’s network configu-
rations which specify the number of units in each
the layer)-(hidden
layer)-(out layer) for standard networks and (input

layer in form of (input
layer)-(first hidden layer)-(second hidden
layer)-(third hidden

RBCNs. Table 2 shows a set of production rules

layer)-(output layer) for
that are extracted from an original network trained
with iris data set2. For this set, we extracted two
rules from every non-input node: one confirming
with highest
the RBCN

constructed with the 17 exiracted rules. The initial

rule and one disconfirming rule

total-sum. Figure 5 illustrates
weights of each input connections from positive
attributes is set to around I/p (or -1/g for the
connection from negated attributes) where the p (or
@) is the number of positive (negative) attributes in
The

corresponding conjunction unit is set to about 0.2.

the rule’s premise. initial threshold of the
The weights from conjunction nodes to output or
hidden nodes are set to strong values (e.g. 0.35).
The performance comparison is shown in Table 3.
The

promising because the RBCN improvesgeneralization

result of the promoter domain is quite
with 20 times smaller number of connections. In
the domain, the RBCN has Dbetter

only 37.7% of the size of

hepatitis
generalization with

Table 1 Network configuration

etwork configurat
il . RBCN Ori,
P n setl 228-6-5-5-1
romoter <et2 998 13-7-18-1 228-14-1
Hepaitis [~ o 439 1892 34-20-2
set2 34-30-17-11-2
. setl 12-12-6-6-3
s set2 12-11-6-6-3 12-6-3

2 e A 27 A A 11 FE00011

Table 2 The extracted rules from the trained
standard neural network on the iris data
set?. 11 rules from hidden nodes and 6
rules from output nodes.
RO I x8 and x11 Then not h0
Rl I x5 and x7 and x10 Then h0
R2 If x1 and x3 and x7 and x11 Then not hi
R3 If x0 and x5 and x6 and x9 Then hl
R4 T x2 and x6 and X9 Then not h2
R5 If x2 and x5 and x7 and x10 Then not h3
R6 If x8 and x11 Then h3
R7 If x8 and x11 Then not hd
RS ¥ x5 and X7 and x10 Then h4
R9 If x5 and x7 and x10 Then not hd
RI10 If x8 and x11 Then h5
R11 T not hl and K2 Then not y0
R12 If h0 and hl and not h2 Then 0
and not 113 and not hd and 15
R13 If not 0 and not h2 Then 1ot v1
and not hd and b
R14 If h2 and h4 and not hS Then v1
R15 If h0 and h4 ‘Then not y2
R16 If not hO and not hi and
not h2 and h3 and not h4 Then y2
and hb

O O O Output layer (3 nodes)
y0 y1

%A&

R11 F(12 R13 Ri4 R15 R16

Conjunction layer
(6 rules)

O Hidden layer
ho nt hB (6 nades)

54 o/é é POVAS N

R1 R2 R3 R4 R5 R6 R7 R8 R9 RI10 layer (11 rules)

Input layer
(12 nodes)

O O ]
X0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11

Fig. 5 Rule-based
structed from the extracted rules in Table

connectionist network con-—

2. The number of connections in this

network is 98.

original network. The iris domain has a small
number of input attributes, so the network size is
small. The same generalization was obtained with

much smaller number of connections.

5. Conclusion

In contrast to related work on knowledge-based
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Table 3 Generalization performance and the mqmber of
connections of RBCNs and original neural
networks on the three domains. ‘

. TR

5
\Domain$.

i ave sk
Generalization
Promoter |(%) 86.85 [3L.11 [84.91 (83.02
Connections |96 |217 |1565 /3221
Generalization
Hepatitis |(%)
Connections  |272 |288 |280 |742
Generalization
Iris (%)
Connections  [108 |98 1103|234

96.10 |196.15 |96.13 |94.81 19359 (94.19

08.67 |98.67 |98.67 |98.67 |98.67 [98.67

neural networks, this work shows how to genefate
a rule-based connectionist network on the data
without resource to any prior domain rules.‘ This
process involves extracting rules for each hidden
and output units in the neural network and then
mapping these extracted rules into a rule-based
connectionist network. The main issues addressed
are the complexity of rule generalization. The rule
extraction heuristics presented in this paper is
computationally efficient compared to previous ones.
The results of this study suggest that a fully-
connected neural network can be converted into an
efficient rule-based connectionist network of
reduced size. Yet, its feasibility has much to do

with whether the domain is governed by rules.
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