• Title/Summary/Keyword: Ictal SPECT

Search Result 24, Processing Time 0.025 seconds

Diagnosis of Ictal Hyperperfusion Using Subtraction Image of Ictal and Interictal Brain Perfusion SPECT (발작기와 발작간기 뇌 관류 SPECT 감산영상을 이용한 간질원인 병소 진단)

  • Lee, Dong Soo;Seo, Jong-Mo;Lee, Jae Sung;Lee, Sang-Kun;Kim, Hyun Jip;Chung, June-Key;Lee, Myung Chul;Koh, Chang-Soon
    • The Korean Journal of Nuclear Medicine
    • /
    • v.32 no.1
    • /
    • pp.20-31
    • /
    • 1998
  • A robust algorithm to disclose and display the difference of ictal and interictal perfusion may facilitate the detection of ictal hyperfusion foci. Diagnostic performance of localizing epileptogenic zones with subtracted SPECT images was compared with the visual diagnosis using ictal and interictal SPECT, MR, or PET. Ietal and interictal Tc-99m-HMPAO cerebral perfusion SPECT images of 48 patients(pts) were processed to get parametric subtracted images. Epileptogenic foci of all pts were diagnosed by seizure free state after resection of epileptogenic zones. In subtraction SPECT, we used normalized difference ratio of pixel counts(ictal-interictal)/interictal ${\times}100%$) after correcting coordinates of ictal and interictal SPECT in semi-automatized 3-dimensional fashion. We found epileptogenic zones in subtraction SPECT and compared the performance with visual diagnosis of ictal and interictal SPECT, MR and PET using post-surgical diagnosis as gold standard. The concordance of subtraction SPECT and ictal-interictal SPECT was moderately good(kappa=0.49). The sensitivity of ictal-interictal SPECT was 73% and that of subtraction SPECT 58%. Positive predictive value of ictal-interictal SPECT was 76% and that of subtraction SPECT was 64%. There was no statistical difference between sensitivity or positive predictive values of subtraction SPECT and ictal-interictal SPECT, MR or PET. Such was also the case when we divided patients into temporal lobe epilepsy and neocortical epilepsy. We conclude that subtraction SPECT we produced had equivalent diagnostic performance compared with ictal-interictal SPECT in localizing epileptogenic zones. Additional value of these subtraction SPECT in clinical interpretation of ictal and interictal SPECT should be further evaluated.

  • PDF

Functional Neuroimaging in Epilepsy: FDG-PET and SPECT (간질에서의 기능적 뇌영상:양전자방출단층촬영과 단일광전자방출 단층촬영)

  • Lee, Sang-Kun;Lee, Dong-Soo
    • The Korean Journal of Nuclear Medicine
    • /
    • v.37 no.1
    • /
    • pp.24-33
    • /
    • 2003
  • Finding epileptogenic zone is the most important step for the successful epilepsy surgery. F-18 fluorodeoxyglucose positron emission tomography (FDG-PET) and single photon emission computed tomography (SPECT) can be used in the localization of epileptogenic foci. In medial temporal lobe epilepsy, the diagnostic sensitivity of FDG-PET and ictal SPECT is excellent. However, detection of hippocampal sclerosis by MRI is so certain that use of FDG-PET and ictal SPECT in medial temporal lobe epilepsy is limited for some occasions. In neocortical epilepsy, the sensitivities of FDG-PET or ictal SPECT are fair. However, FDG-PET and ictal SPECT can have a crucial role in the localization of epileptogenic foci for non-lesional neocortical epilepsy. Interpretation of FDG-PET has been recently advanced by voxel-based analysis and automatic volume of interest analysis based on a population template. Both analytical methods can aid the objective diagnosis of epileptogenic foci. Ictal SPECT was analyzed using subtraction methods and voxel-based analysis. Rapidity of injection of tracers, ictal EEG findings during injection of tracer, and repeated ictal SPECT were important technical issues of ictal SPECT. SPECT can also be used in the evaluation of validity of Wada test.

Ictal Cerebral Perfusion Patterns in Partial Epilepsy: SPECT Subtraction (부분적 간질에서 SPECT Subtraction을 이용한 발작 중 뇌혈류 변화에 대한 연구)

  • Lee, Hyang-Woon;Hong, Seung-Bong;Tae, Woo-Suk;Kim, Sang-Eun;Seo, Dae-Won;Jeong, Seung-Cheol;Yi, Ji-Young;Hong, Seung-Chyul
    • The Korean Journal of Nuclear Medicine
    • /
    • v.34 no.3
    • /
    • pp.169-182
    • /
    • 2000
  • Purpose: To investigate the various ictal perfusion patterns and find the relationships between clinical factors and different perfusion patterns. Materials and Methods: Interictal and ictal SPECT and SPECT subtraction were performed in 61 patients with partial epilepsy. Both positive images showing ictal hyperperfusion and negative images revealing ictal hypoperfusion were obtained by SPECT subtraction The ictal perfusion patterns of subtracted SPECT were classified into focal hyperperfusion, hyperperfusion-plus, combined hyperperfusion-hypoperfusion, and focal hypoperfusion only. Results: The concordance rates with epileptic focus were 91.8% in combined analysis of ictal hyperperfusion and hypoperfusion images of subtracted SPECT, 85.2% in hyperperfusion images only of subtracted SPECT, and 68.9% in conventional ictal SPECT analysis. Ictal hypoperfusion occurred less frequently in temporal lobe epilepsy (TLE) than extratemporal lobe epilepsy. Mesial temporal hyperperfusion alone was seen only in mesial TLE while lateral temporal hyperperfusion alone was observed only in neocortical TLE. Hippocampal sclerosis had much lower incidence of ictal hypoperfusion than any other pathology. Some patients showed ictal hypoperfusion at epileptic focus with ictal hyperperfusion in the neighboring brain regions where ictal discharges propagated. Conclusion: Hypoperfusion as well as hyperperfusion in ictal SPECT should be considered for localizing epileptic focus. Although the mechanism of ictal hypoperfusion could be an intra-ictal early exhaustion of seizure focus or a steal phenomenon by the propagation of ictal discharges to adjacent brain areas, further study is needed to elucidate it.

  • PDF

Comparison of Ictal-Interictal Subtraction and Statistical Parametric Mapping in Patients with Temporal Lobe Epilepsy

  • Rahyeong Juh;Taesuk Suh;Kim, Jaeseung;Daehyuk Moon
    • Proceedings of the Korean Society of Medical Physics Conference
    • /
    • 2002.09a
    • /
    • pp.335-337
    • /
    • 2002
  • The aim of this study was investigate the epileptogenic zone in temporal lobe epilepsy (TLE). We evaluated the subtraction image of interictal SPECT from ictal SPECT coregistered to 3-dimensional (3D) MRI, and compared with the normal healthy SPECT using a SPM99. Forty-nine patients with TLE (M:F=28:21, mean age: 33${\pm}$2.1 years) underwent a pairs of ictal and interictal SPECT. We performed subtraction interictal SPECT from ictal SPECT in TLE patients. In addition, using SPM methods and t-statistics, SPECT images of the TLE patients were compared with normal healthy SPECT on a voxel by voxel basis. The voxels with a p-value of less than 0.05, 0.005, 0.001 were considered to be significantly different. The subtraction results by ictal and interictal SPECT coincided with the significant rCBF changes when compare of the normal healthy SPECT using a SPM99. The results suggested that analysis of difference of the two methods using healthy normal SPECT with SPM99 is useful tool in evaluation of seizure focus in epilepsy.

  • PDF

The Performance of Ictal Brain SPECT for Localizing Epileptogenic Foci in Temporal Lobe Epilepsies (측두엽 간질에서 발작기 뇌관류 SPECT의 간질병소 국소화 성능)

  • Kim, Eun-Sil;Lee, Dong-Soo;Chung, June-Key;Lee, Myung-Chul;Koh, Chang-Soon;Chang, Kee-Hyun;Lee, Sang-Kun;Chung, Chun-Kee
    • The Korean Journal of Nuclear Medicine
    • /
    • v.29 no.3
    • /
    • pp.287-293
    • /
    • 1995
  • Anterior temporal lobectomy has become a widely used resective surgery in patients with medically intractable temporal lobe epilepsies. Prerequisites of this resection include the accurate localization of the epileptogenic focus and the determination that the proposed resection would not result in unacceptable postoperative memory or language deficits. The purpose of this study was to evaluate the performance of ictal SPECT compared to MRI findings for localization of epiletogenic foci in this group of patients. 11 patients who had been anterior temporal lobectomy were evaluated with ictal $^{99m}Tc$-HMPAO SPECT and MRI. MRI showed 8/11(73%) concordant lesion to the side of surgery and ictal SPECT also showed 8/11(73%) concordant hyperperfusion. In 3 cases with incorrect or nonlocalizing findings of MRI, ictal SPECT showed concordant hyperperfusion. In 2 cases confirmed by pre-resectional invasive EEG, MRI showed bilateral and contralateral lesion but ictal SPECT showed concordant hyperperfusion. 3 delayed injection of ictal SPECT showed discordant hyperperfusion. Thus, ictal SPECT was a useful method for localizing epileptogenic foci in temporal lobe epilepsis and appeared complementay to MRI.

  • PDF

The Performance of Ictal Brain SPECT Localizing for Epileptogenic Zone in Neocortical Epilepsy (신피질성 간질에서 발작기 $^{99m}Tc$-HMPAO 뇌혈류 SPECT의 간질병소 국소화 성능)

  • Kim, Eun-Sil;Lee, Dong-Soo;Hyun, In-Young;Chung, June-Key;Lee, Myung-Chul;Koh, Chang-Soon;Lee, Sang-Kun;Chang, Kee-Hyun
    • The Korean Journal of Nuclear Medicine
    • /
    • v.29 no.4
    • /
    • pp.445-450
    • /
    • 1995
  • The epileptogenic zones should be localized precisely before surgical resection of these zones in intractable epilepsy. The localization is more difficult in patients with neocortical epilepsy than in patients with temporal lobe epilepsy. This study aimed at evaluation of the usefulness of ictal brain perfusion SPECT for the localization of epileptogenic zones in neocortical epilepsy. We compared the performance of ictal SPECT with MRI referring to ictal scalp electroencephalography(sEEG). Ictal $^{99m}Tc$-HMPAO SPECT were done in twenty-one patients. Ictal EEG were also obtained during video monitoring. MRI were reviewd. According to the ictal sEEG and semiology, 8 patients were frontal lobe epilepsy, 7 patients were lateral temporal lobe epilepsy, 2 patients were parietal lobe epilepsy, and 4 patients were occipital lobe epilepsy. Ictal SPECT showed hyperperfusion in 14 patients(67%) in the zones which were suspected to be epileptogenic according to ictal EEG and semiology. MRI found morphologic abnormalities in 9 patients(43%). Among the 12 patients, in whom no epileptogenic zones were revealed by MRI, ictal SPECT found zones of hyperperfusion concordant with ictal SEEG in 9 patients(75%). However, no zones of hyperperfusion were found in 4 among 9 patients who were found to have cerebromalacia, abnormal calcification and migration anomaly in MRI. We thought that ictal SPECT was useful for localization of epileptogenic zones in neocortical epilepsy and especially in patients with negative findings in MRI.

  • PDF

Ictal single-photon emission computed tomography with slow dye injection for determining primary epileptic foci in infantile spasms (영아연축에서 추적자의 느린 점적주사를 이용한 발작기 SPECT)

  • Hur, Yun Jung;Lee, Joon Soo;Kang, Hoon Chul;Park, Hye Jung;Yun, Mi Jin;Kim, Heung Dong
    • Clinical and Experimental Pediatrics
    • /
    • v.52 no.7
    • /
    • pp.804-810
    • /
    • 2009
  • Purpose : We investigated whether ictal single-photon emission computed tomography (SPECT) with prolonged injection of technetium-99m (99mTc) ethyl cysteinate dimer during repeated spasms can localize the epileptogenic foci in children with infantile spasms. Methods : Fourteen children with infantile spasms (11 boys, 3 girls; mean age, $2.2{\pm}1.3$ years) were examined. When a cluster of spasms was detected during video electroencephalography (EEG) monitoring, $^{99m}Tc$ ethyl cysteinate dimer was slowly and continuously injected for 2 minutes to determine the presence of ictal SPECT. For 7 children, the ictal and interictal SPECT images were visually analyzed, while for the remaining 7 children, the SPECT images were analyzed using the subtraction ictal SPECT coregistered to magnetic resonance imaging (MRI) (SISCOM) technique. Subsequently, we analyzed the association between the ictal SPECT findings and those of other diagnostic modalities such as EEG, MRI, and positron emission tomography (PET). Results : Increase in cerebral blood flow on ictal SPECT involved the epileptogenic foci in 10 cases6 cases analyzed by visual assessment and 4 analyzed by the SISCOM technique. The ictal SPECT and video-EEG findings showed moderate agreement (Kappa=0.57; 95% confidence interval, 0.18-0.96). Conclusion : Ictal SPECT with prolonged injection of a tracer could provide supplementary information to localize the epileptogenic foci in infantile spasms.

$^{99m}Tc-HMPAO$ Brain SPECT in Medically Intraetable Epilepsy; Ictal Study (간질증후군의 $^{99m}Tc-HMPAO$ Brain SPECT; Ictal Study)

  • Chung, Tae-Sub;Suh, Jung-Ho;Kim, Dong-Ik;Lee, Jong-Doo;Park, Chang-Yun;Hong, Yong-Kook;Lee, Byung-In;Huh, Kyun
    • The Korean Journal of Nuclear Medicine
    • /
    • v.26 no.2
    • /
    • pp.244-250
    • /
    • 1992
  • Both interictal and ictal $^{99m}Tc-HMPAO$ brain SPECT were performed in 22 patients with medically intractable epilepsy. Localization of epileptic foci in our patients was made by combined results of EEG and other tests, including Wada test, magnetic resonance imaging, and neuropsychometric test. Among them, ictal $^{99m}Tc-HMPAO$ SPECT, localized epilptic foci in 20 of 22 patients and provided evidence of epileptic focus in 12 patients by demonstrating maximally increased regional cerebral perfusion (rCP) in epileptic foci during the ictal study with decreased rCP in interictal study. Ictal $^{99m}Tc-HMPAO$ SPECT was particularly useful for investigating epileptic foci, and when correlated with simultaneously recorded ictal EEG, provided further insight for localizing epileptic foci. Conclusively, $^{99m}Tc-HMPAO$ SPECT is. a useful, noninvasive method of localizing epileptic activity which may be particularly important for presurgical investigations, especially in those patients without large morphological lesions.

  • PDF

Comparison of Diagnostic Performance between Interictal F-18-FDG PET and Ictal Tc-99m-HMPAO SPECT in Occipital Lobe Epilepsy (후두엽간질 환자에서 F-18-FDG PET와 발작기 Tc-99m-HMPAO SPECT의 간질원인병소 진단 성능 비교)

  • Kim, Seok-Ki;Lee, Dong-Soo;Yeo, Jeong-Seok;Lee, Sang-Kun;Kim, Joo-Yong;Jeong, Jae-Min;Chung, June-Key;Lee, Myung-Chul
    • The Korean Journal of Nuclear Medicine
    • /
    • v.33 no.3
    • /
    • pp.262-272
    • /
    • 1999
  • Purpose: Interictal F-18-fluorodeoxyglucose (FDG) PET and ictal Tc-99m-HMPAO SPECT are found to be useful in localizing epileptogenic zones in neocortical lateral temporal or frontal lobe epilepsy. We investigated whether interictal F-18-FDG PET or ictal Tc-99m-HMPAO SPECT was useful to find epileptogenic Bones in occipital lobe epilepsy (OLE). Materials and Methods: We reviewed patterns of hypometabolism in interictal F-18-FDG PET and of hyperperfusion in ictal Tc-99m-HMPAO SPECT in 17 OLE patients (mean age=$27{\pm}6.8$ year, M:F= 10:7, injection time= $30{\pm}17$ sec). OLE was diagnosed based on invasive electroencephalography (EEG) study, surgery and post-surgical outcome (Engel class I in all for average 14 months). Results: Epileptogenic zones were correctly localized in 9 (60%) out of 15 patients by interictal F-18-FDG PET. Epiletogenic hemispheres were correctly lateralized in 14 patients (93%). By ictal Tc-99m-HMPAO SPECT, epileptogenic hemispheres were correctly lateralized in 13 patients (76%), but localization was possible only in 3 patients (18%). Among patients who showed no abnormality with MR imaging and no correct localization with ictal Tc-99m-HMPAO SPECT, interictal F-18-FDG PET was helpful in 2 patients. Conclusion: Ictal Tc-99m-HMPAO SPECT was helpful in lateralization but not in localization in OLE. Interictal F-18-FDG PET was helpful for localization of epileptogenic zones even in patients with ambiguous MR or ictal SPECT findings.

  • PDF

Nuclear Imaging in Epilepsy (간질에서의 핵의학 영상)

  • Chun, Kyung-Ah
    • Nuclear Medicine and Molecular Imaging
    • /
    • v.41 no.2
    • /
    • pp.97-101
    • /
    • 2007
  • Correct localization of epileptogenic zone is important for the successful epilepsy surgery. Both ictal perfusion single photon emission computed tomography (SPECT) and interictal F-18 fluorodeoxyglucose positron emission tomography (FDG-PET) can provide useful information in the presurgical localization of intractable partial epilepsy. These imaging modalities have excellent diagnostic sensitivity in medial temporal lobe epilepsy and provide good presurgical information in neocortical epilepsy. Also provide functional information about cellular functions to better understand the neurobiology of epilepsy and to better define the ictal onset zone, symptomatogenic zone, propagation pathways, functional deficit zone and surround inhibition zones. Multimodality imaging and developments in analysis methods of ictal perfusion SPECT and new PET ligand other than FDG help to better define the localization.