• Title/Summary/Keyword: ITs rDNA

Search Result 1,141, Processing Time 0.033 seconds

Phylogenetic relationships of genera Grifola on the basis of ITS region sequences (rDNA의 ITS 부위 염기서열 분석에 의한 잎새버섯(Grifola)속 균주의 유전적인 유연관계 분석)

  • Lee, Chan-Jung;Jhune, Chang-Sung;Cheong, Jong-Chun;Kong, Won-Sik;Suh, Jang-Sun
    • Journal of Mushroom
    • /
    • v.10 no.2
    • /
    • pp.93-99
    • /
    • 2012
  • This study was carried to identify a correct species and asses genetic diversity within the same species of Grifola spp. preserved in Division of applied Microbiology. Contaminated isolates showed different growth rates, morphology and color of hyphae. We have reconstructed the phylogenetic tree of a select group of Grifola spp. using nucleotide sequences of the internal transcribed spacer region(ITS) region. The phylogenetic tree was constructed by using the neighbor-joining method. PELF primers of 20-mer were used to assess genetic diversity of preserved isolates. Sequence analysis showed that four strains were identified completely different nomenclature. According to the analysis of ITS sequences, the genus Grifola clustered into one group, most of which correlated with species-groups identified by RAPD method. Eight isolates included strain GM01 showed high similarity with Grifola frondosa. All isolates were collected in the Japan(GM01, GM02, GM03) was identified as Grifola frondosa and isolates of the China(GM05, GM06, GM08) was identified as Bjerkandera fumosa, Grifola frondosa and Dichomitus squalens, respectively. RAPD analysis of genetic polymorphisms of genus Grifola showed a very different band patterns on the isolat. As the result of RAPD and ITS region sequences analysis for preserved isolates, it seems likely that 4 isolates of Grifola spp. may be need to reclassify or eliminate from preserved catalogue.

Phylogenetic relationships of genera Trametes on the basis of ITS region sequences (rDNA의 ITS 부위 염기서열 분석에 의한 구름버섯 균주의 유전적인 유연관계 분석)

  • Lee, Chan-Jung;Jhune, Chang-Sung;Cheong, Jong-Chun;Oh, Jin-A;Han, Hye-Su;Um, Na-Na
    • Journal of Mushroom
    • /
    • v.9 no.1
    • /
    • pp.27-33
    • /
    • 2011
  • This study was carried to identify a correct species and asses genetic diversity within the same species of Trametes spp. preserved in Division of applied Microbiology The morphological and cultural characteristics of preserved strains were observed through microscope and investigated on PDA, respectively. Contaminated isolates showed different growth rates, morphology and color of hyphae. We have reconstructed the phylogenetic tree of a select group of Trametes spp. using nucleotide sequences of the internal transcribed spacer region(ITS) region. The phylogenetic tree was constructed by using the neighbor-joining method. PELF primers of 20-mer were used to assess genetic diversity of preserved isolates. Sequence analysis showed that five strains were different species and six strains were identified completely different nomenclature. According to the analysis of ITS sequences, the genus Trametes clustered into four distinct group, most of which correlated with species-groups identified by RAPD method. Seven isolates included TM 01 strain showed high similarity with Trametes versicolr, TM 07 and TM 10 high similarity with Trametes gibbosa, and TM 05 high similarity with Trametes elegans. But isolates collected in the United States was identified as T. junipericola. T. gibbosa and T. versicolor by RAPD analysis of genetic polymorphisms showed a very different band patterns and these strains showed different band patterns on areas. As the result of RAPD and ITS region sequences analysis for preserved isolates, it seems likely that 11 isolates of Trametes spp. may be need to reclassify or eliminate from preserved catalogue.

Phylogenetic relationships of genera Polyporus on the basis of ITS region sequences (rDNA의 ITS 부위 염기서열 분석에 의한 겨울우산버섯(Polyporus)속 균주의 유전적인 유연관계 분석)

  • Lee, Chan-Jung;Jhune, Chang-Sung;Cheong, Jong-Chun;Kong, Won S.
    • Journal of Mushroom
    • /
    • v.10 no.1
    • /
    • pp.37-43
    • /
    • 2012
  • This study was carried to identify a correct species and asses genetic diversity within the same species of Polyporus spp. preserved in Division of applied Microbiology. Contaminated isolates showed different growth rates, morphology and color of hyphae. We have reconstructed the phylogenetic tree of a select group of Polyporus spp. using nucleotide sequences of the internal transcribed spacer region(ITS) region. The phylogenetic tree was constructed by using the neighbor-joining method. PELF primers of 20-mer were used to assess genetic diversity of preserved isolates. Sequence analysis showed that three strains were different species and four strains were identified completely different nomenclature. According to the analysis of ITS sequences, the genus Polyporus clustered into five distinct group, most of which correlated with species-groups identified by RAPD method. Four isolates included strain PM02 showed high similarity with P. arcularius, four isolates included strain PM03 high similarity with P. alveolaris, three isolates included strain PM01 high similarity with P. tuberaster, and PM 06 and PM04 high similarity with P. brumalis and P. squamossus. Isolates were collected in the United States(PM10, PM11) was identified as P. alveolarius and P. arcularius. RAPD analysis of genetic polymorphisms of genus Polyporus showed a very different band patterns. As the result of RAPD and ITS region sequences analysis for preserved isolates, it seems likely that 6 isolates of Polyporus spp. may be need to reclassify or eliminate from preserved catalogue.

Identification and Characterization of Agar-degrading Vibrio sp. GNUM08123 Isolated from Marine Red Macroalgae (한천분해 미생물 Vibrio sp. GNUM08123의 동정 및 agarase 생산의 발효적 특성)

  • Chi, Won-Jae;Kim, Yoon Hee;Kim, Jong-Hee;Hong, Soon-Kwang
    • Microbiology and Biotechnology Letters
    • /
    • v.45 no.3
    • /
    • pp.243-249
    • /
    • 2017
  • An agar-degrading bacterium, designated as the GNUM08123 strain, was isolated from samples of red algae collected from the Yongil Bay near East Sea, Korea. The isolated GNUM08123 strain was gram-negative, aerobic, motile, and beige-pigmented, with $C_{16:0}$ (25.9%) and summed feature 3 (comprising $C_{16:1}{\omega}7c/iso-C_{15:0}2-OH$, 34.4%) as its major cellular fatty acids. A similarity search based on the 16S rRNA gene sequence revealed that it belonged to class Gammaproteobacteria and shared 97.7% similarity with the type strain Vibrio chagasii $R-3712^T$. The DNA G+C content of strain $GNUM08123^T$ was 46.9 mol%. The major isoprenoid quinone was ubiquinone-8. The results of DNA-DNA relatedness and 16S rRNA sequence similarity analyses, in addition to its phenotypic and chemotaxonomic characteristics, suggest that strain GNUM08123 is a novel species within genus Vibrio, designated as Vibrio sp. GNUM08123. Agarase production by strain GNUM08123 was induced by agar and sucrose, but was repressed probably owing to carbon catabolite repression by glucose and maltose.

Sclerotium Rot of Cowpea (Vigna sinensis King) Caused by Sclerotium rolfsii (Sclerotium rolfsii에 의한 동부 흰비단병)

  • Kwon, Jin-Hyeuk;Kang, Dong-Wan;Han, Inyoung;Choi, Yong-Jo;Lee, Sang-Dae;Son, Daeyoung
    • The Korean Journal of Mycology
    • /
    • v.44 no.1
    • /
    • pp.61-63
    • /
    • 2016
  • Sclerotium rot disease on cowpea (Vigna sinensis King) was observed in the exhibition field of Gyeongsangnam-do Agricultural Research and Extension Services in September 2015. Lesions were covered by white mycelial mats, and numerous sclerotia were formed on the stem near the soil line. The sclerotia were globoid in shape, 1~3 mm in size and white to brown in color. The optimum temperature for mycelial growth and sclerotia formation on potato dextrose agar (PDA) was $30^{\circ}C$, with the hyphal width of $4{\sim}8{\mu}m$. For molecular identification, the complete internal transcribed spacer (ITS) rDNA region of the causal fungus was sequenced and analyzed. Based on the mycological characteristics, ITS rDNA sequence analysis, and pathogenicity test, this fungus was identified as Sclerotium rolfsii. This is the first report of sclerotium rot on cowpea caused by S. rolfsii in Korea.

First Report of Three Didymella Species Isolated from Freshwater Ecosystem in Korea (담수환경에서 발굴된 Didymella속 3종의 국내 최초 보고)

  • Mun, Hye Yeon;Goh, Jaeduk;Oh, Yoosun;Jeong, Ae-Ran;Chung, Namil
    • The Korean Journal of Mycology
    • /
    • v.46 no.1
    • /
    • pp.1-8
    • /
    • 2018
  • Three fungal isolates, NNIBRFG108, 1139, and 1480, were isolated from freshwater environments; NNIBRFG108 from plant litter in Samcheok, Gangwon and NNIBRFG1139 and 1480 from the soil in Jeju & Gimcheon, Gyeongbuk, Korea. Based on the morphological characteristics and phylogenetic analysis of internal tanscribed spacer (ITS), 28S rDNA region, and ${\beta}$-tubulin gene, NNIBRFG108, NNIBRFG1139, and NNIBRFG1480 isolates were confirmed as Didymella segeticola, D. ellipsoidea, and D. aeria, respectively. Neither species has previously been described in Korea.

Ocurrence of Clubroot Caused by Plasmodiophora brassicae on Kohlrabi in Korea (Plasmodiophora brassicae에 의한 콜라비 뿌리혹병 발생)

  • Song, MinA;Choi, InYoung;Song, JeongHeub;Lee, KuiJae;Shin, HyeonDong;Galea, Victor
    • Research in Plant Disease
    • /
    • v.25 no.1
    • /
    • pp.33-37
    • /
    • 2019
  • From 2016 to 2018, approximately 15% of kohlrabi were observed displaying significant clubroot symptoms in farmer's fields in Jeju, Korea. The initial infection appeared as hypertrophy of root hairs, and as the disease progressed, galls formation occurred on the main roots, finally disease progress resulted in yellowing and wilting of leaves. Pathogenicity was proven by artificial inoculation of plants with resting spore suspension, fulfilling Koch's postulates. The resting spore is one-celled, spherical and subspherical, colorless, and $3-5{\mu}m$ in diameter. On the basis of the morphological characteristics and phylogenetic analyses of internal transcribed spacer rDNA, the causal agent was identified as Plasmodiophora brassicae. To our knowledge, this is the first report on the occurrence of P. brassicae on kohlrabi in Korea.

Biological roles and an evolutionary sketch of the GRF-GIF transcriptional complex in plants

  • Kim, Jeong Hoe
    • BMB Reports
    • /
    • v.52 no.4
    • /
    • pp.227-238
    • /
    • 2019
  • GROWTH-REGULATING FACTORs (GRFs) are sequence-specific DNA-binding transcription factors that regulate various aspects of plant growth and development. GRF proteins interact with a transcription cofactor, GRF-INTERACTING FACTOR (GIF), to form a functional transcriptional complex. For its activities, the GRF-GIF duo requires the SWITCH2/SUCROSE NONFERMENTING2 chromatin remodeling complex. One of the most conspicuous roles of the duo is conferring the meristematic potential on the proliferative and formative cells during organogenesis. GRF expression is post-transcriptionally down-regulated by microRNA396 (miR396), thus constructing the GRF-GIF-miR396 module and fine-tuning the duo's action. Since the last comprehensive review articles were published over three years ago, many studies have added further insight into its action and elucidated new biological roles. The current review highlights recent advances in our understanding of how the GRF-GIF-miR396 module regulates plant growth and development. In addition, I revise the previous view on the evolutionary origin of the GRF gene family.

The complete plastid genome and nuclear ribosomal transcription unit sequences of Spiraea prunifolia f. simpliciflora (Rosaceae)

  • Jeongjin CHOI;Wonhee KIM;Jee Young PARK;Jong-Soo KANG;Tae-Jin YANG
    • Korean Journal of Plant Taxonomy
    • /
    • v.53 no.1
    • /
    • pp.32-37
    • /
    • 2023
  • Spiraea prunifolia f. simpliciflora Nakai is a perennial shrub widely used for horticultural and medicinal purposes. We simultaneously obtained the complete plastid genome (plastome) and nuclear ribosomal gene transcription units, 45S nuclear ribosomal DNA (nrDNA) and 5S nrDNA of S. prunifolia f. simpliciflora, using Illumina short-read data. The plastome is 155,984 bp in length with a canonical quadripartite structure consisting of 84,417 bp of a large single-copy region, 18,887 bp of a short single-copy region, and 26,340 bp of two inverted repeat regions. Overall, a total of 113 genes (79 protein-coding genes, 30 tRNAs, and four rRNAs) were annotated in the plastome. The 45S nrDNA transcription unit is 5,848 bp in length: 1,809 bp, 161 bp, and 3,397 bp for 18S, 5.8S, and 26S, respectively, and 261 bp and 220 bp for internal transcribed spacer (ITS) 1 and ITS 2 regions, respectively. The 5S nrDNA unit is 512 bp, including 121 bp of 5S rRNA and 391 bp of intergenic spacer regions. Phylogenetic analyses showed that the genus Spiraea was monophyletic and sister to the clade of Sibiraea angustata, Petrophytum caespitosum and Kelseya uniflora. Within the genus Spiraea, the sections Calospira and Spiraea were monophyletic, but the sect. Glomerati was nested within the sect. Chamaedryon. In the sect. Glomerati, S. prunifolia f. simpliciflora formed a subclade with S. media, and the subclade was sister to S. thunbergii and S. mongolica. The close relationship between S. prunifolia f. simpliciflora and S. media was also supported by the nrDNA phylogeny, indicating that the plastome and nrDNA sequences assembled in this study belong to the genus Spiraea. The newly reported complete plastome and nrDNA transcription unit sequences of S. prunifolia f. simpliciflora provide useful information for further phylogenetic and evolutionary studies of the genus Spiraea, as well as the family Rosaceae.

Phylogenetic Analysis of the Genus Dendronephthya (Nephtheidae, Alcyonacea) Based on Internal Transcribed Spacer Sequences of Nuclear rDNA

  • Lee, Young-Ja;Song, Jun-Im
    • Animal cells and systems
    • /
    • v.4 no.4
    • /
    • pp.319-324
    • /
    • 2000
  • Species boundaries among the Alcyonacean soft coral, the genus Dendronephthya, are often obscured by inter- and intraspecific morphological variations. In the present study, we attempted to infer the genetic relationships of eight dendronephthians based on their molecular characters, the internal transcribed spacer (ITS) regions of ribosomal DNA, and then compared this result together with the random amplified polymorphic DNA (RAPD) data from our previous investigation. Dendronephthya. putteri and D. suensoni formed a divaricate form - VI grade specific clade, whereas D. castanea, D. gigantea, D. aurea and D. spinifera, formed a umbellate and glomerate form - IV and III grade specific clade. Therefore, we confirmed that the main characters the growth form and the anthocodial grade and formula, are important in identification of the species in dendronephthians despite some problems. Also, the relationships of the growth form are clarified as the glomerate form is much closer to the umbellate form than to the divaricate form based on two sets of independent molecular data. However, we cannot determine the molecular markers which limit the species boundaries among this genus with ITS sequences.

  • PDF