• Title/Summary/Keyword: ITS : Intelligent Transport Systems

Search Result 2,123, Processing Time 0.022 seconds

Emission Rates Estimation by Vehicle Type in Seoul Using the Vehicle Inspection Data (차량 검사 데이터를 활용한 서울시 자동차 유형별 배출 가스량 원단위 산정)

  • Lee, Hyosun;Han, Yohee;Park, Shin Hyoung;Hwang, Ho Hyun;Kim, Youngchan
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.20 no.6
    • /
    • pp.177-191
    • /
    • 2021
  • One of the major causes of serious air pollution worldwide is emissions from road transportation. A number of countries are working to reduce vehicle emissions, and the Seoul Metropolitan Government is also implementing active policies to reduce emissions by setting a target of 40% by 2030. Implementing these policies requires the introduction of practical indicators. Most of the domestic emissions are calculated by the emission coefficient, a function of speed at the National Institute of Environmental Research under the Ministry of Environment, but the dynamic variable speed is limited to being used as an indicator of the number of eco-friendly vehicles. Therefore, this study calculated the emission rates in Seoul using the vehicle registration data of Seoul and the vehicle inspection data from the Korea Transportation Safety Authority. The tendency of emissions was determined according to key variables such as vehicle type, fuel and mileage. Emissions were based on carbon monoxide, hydrocarbons, nitrogen oxides and particulate matter measured by vehicle inspection from the Korea Transportation Safety Authority. As a result, the emission rates showed a significant trend according to the model year and mileage. This can be used as a policy indicator to preferentially switch commercial vehicles with old model years and long mileage when switching eco-friendly vehicles in Seoul.

Study on the Development of Methodology for Evaluation of Driving Safety of Automated Vehicles on Real Roads (실도로 기반 자율주행자동차 주행안전성 평가 방법론 개발 연구)

  • Lee, Youngtaek;Kim, Yejin;Jeong, Harim;Yoo, Hosik;Yun, Ilsoo
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.20 no.6
    • /
    • pp.280-298
    • /
    • 2021
  • As the development automated vehicles(AV) actively progresses around the world, the demand for a reasonable and systematic evaluation method for AVs is increasing. Research on scenarios, evaluation procedures, and methods for evaluating AVs conducted in simulations and proving ground(PG) is actively conducted internationally. In contrast, methods and procedures for evaluations on real roads are still in their infancy internationally. Therefore, it is necessary to conduct research on evaluating AVs on real roads in preparation for future use of AVs. This study aims to define the basic direction for evaluating the driving safety of AVs on real roads. To this end, the evaluation direction and process of AVs were presented on the real roads, and qualitative and quantitative evaluation indicators were selected to evaluate driving safety. A total of 38 items were selected based on the Road Traffic Act as qualitative evaluation items for evaluating the driving safety of AVs on real roads.

Microscopic Traffic Analysis of Freeway Based on Vehicle Trajectory Data Using Drone Images (드론 영상을 활용한 차량궤적자료 기반 고속도로 미시적 교통분석)

  • Ko, Eunjeong;Kim, Soohee;Kim, Hyungjoo
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.20 no.6
    • /
    • pp.66-83
    • /
    • 2021
  • Vehicles experience changes in driving behavior due to the various facilities on the freeway. These sections may cause repetitive traffic congestion when the traffic volume increases, so safety issues may be raised. Therefore, the purpose of this study is to perform microscopic traffic analysis on these sections using drone images and to identify the causes of traffic problems. In the case of drone image, since trajectory data of individual vehicles can be obtained, empirical analysis of driving behavior is possible. The analysis section of this study was selected as the weaving section of Pangyo IC and the sag section of Seohae Bridge. First, the trajectory data was extracted through the drone image. And the microscopic traffic analysis performed on the speed, density, acceleration, and lane change through cell-unit analysis using Generalized definition method. This analysis results can be used as a basic study to identify the cause of the problem section in the freeway. Through this, we aim to improve the efficiency and convenience of traffic analysis.

A Study on the Risk Analysis and Fail-safe Verification of Autonomous Vehicles Using V2X Based on Intersection Scenarios (교차로 시나리오 기반 V2X를 활용한 자율주행차량의 위험성 분석 및 고장안전성 검증 연구)

  • Baek, Yunseok;Shin, Seong-Geun;Park, Jong-ki;Lee, Hyuck-Kee;Eom, Sung-wook;Cho, Seong-woo;Shin, Jae-kon
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.20 no.6
    • /
    • pp.299-312
    • /
    • 2021
  • Autonomous vehicles using V2X can drive safely information on areas outside the sensor coverage of autonomous vehicles conventional autonomous vehicles. As V2X technology has emerged as a key component of autonomous vehicles, research on V2X security is actively underway research on risk analysis due to failure of V2X communication is insufficient. In this paper, the service scenario and function of autonomous driving system V2X were derived by presenting the intersection scenario of the autonomous vehicle, the malfunction was defined by analyzing the hazard of V2X. he ISO26262 Part3 process was used to analyze the risk of malfunction of autonomous vehicle V2X. In addition, a fault injection scenario was presented to verify the fail-safe of the simulation-based intersection scenario.

Study on the Proper Separation Distance from Intersection to Bus Stop for Reducing Traffic Accidents (교통사고 감소를 위한 교차로에서 버스정류장간 적정 이격거리 산정 연구)

  • Eom, Daelyoung;Chae, HeeChul;Park, Wonil;Yun, llsoo
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.21 no.2
    • /
    • pp.1-16
    • /
    • 2022
  • The location of the bus stop on urban roads should be installed at a point where it is convenient for users and the impact of bus stops on the traffic flow is minimized. However, the location of the bus stops is determined indiscriminately due to the lack of related research. Therefore, this study developed a traffic accident prediction model and calculated the proper separation distance for the bus stops through an optimization technique. The result of the study indicates that the bus stop can be installed in the form of a mid-block approximately 87 to 166 m away from the intersection in the road section. This result is valid if the number of main road lanes in the road section is 2 to 4 with a level of traffic from 1,000 to 3,000 v/h. In the section with 5 to 6 lanes, it is desirable to install a bus stop close to the intersection by about 42 to 97 m.

A Study of LiDAR's Detection Performance Degradation in Fog and Rain Climate (안개 및 강우 상황에서의 LiDAR 검지 성능 변화에 대한 연구)

  • Kim, Ji yoon;Park, Bum jin
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.21 no.2
    • /
    • pp.101-115
    • /
    • 2022
  • This study compared the performance of LiDAR in detecting objects in rough weather with that in clear weather. An experiment that reproduced rough weather divided the fog visibility into four stages from 200 m to 50 m and controlled the rainfall by dividing it into 20 mm/h and 50 mm/h. The number of points cloud and intensity were used as the performance indicators. The difference in performance was statistically investigated by a T-Test. The result of the study indicates that the performance of LiDAR decreased in the order in situations of 20 mm/h rainfall, fog visibility less than 200 m, 50 mm/h rainfall, fog visibility less than 150 m, fog visibility less than 100 m, and fog visibility less than 50 m. The decreased performance was greater when the measurement distance was greater and when the color was black rather than white. However, in the case of white, there was no difference in performance at a measurement distance of 10 m even at 50 m fog visibility, which is considered the worst situation in this experiment. This no difference in performance was also statistically significant. These performance verification results are expected to be utilized in the manufacture of road facilities in the future that improve the visibility of sensors.

A Study on the Safety Policies of Truck Traffic Using Fuzzy-AHP (Fuzzy-AHP를 이용한 화물자동차의 교통안전 대책에 관한 연구)

  • Chen, Maowei;Zhou, Lele;Lee, Hyangsook
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.21 no.2
    • /
    • pp.44-61
    • /
    • 2022
  • With the increase of truck traffic, roads are becoming more congested and the risk of accidents is also increasing. Since the fatality rate of traffic accidents caused by trucks is about 2 to 3 times higher than that of passenger cars and buses, it is urgent to prepare policies for truck traffic safety. While most of the previous studies focused on factor analysis that contributes to traffic accidents, this study presented traffic safety policies (4 major-criteria and 12 sub-criteria) for trucks through driver interviews and previous studies. Then, the priority of the policies was evaluated by using Fuzzy-AHP. As a result, the improvement of truck drivers' working environment was evaluated as the most important criteria, and followed by the improvement of road traffic conditions. In detail, there is an urgent need to improve the freight car fare system, ensure sufficient rest for drivers, and strengthen the crackdown of illegal parking and stopping along roads. This study is expected to be usefully utilized in preparing traffic flow safety policies in preparation for the continuous increase of truck traffic.

Research on Longitudinal Slope Estimation Using Digital Elevation Model (수치표고모델 정보를 활용한 도로 종단경사 산출 연구)

  • Han, Yohee;Jung, Yeonghun;Chun, Uibum;Kim, Youngchan;Park, Shin Hyoung
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.20 no.6
    • /
    • pp.84-99
    • /
    • 2021
  • As the micro-mobility market grows, the demand for route guidance, that includes uphill information as well, is increasing. Since the climbing angle depends on the electric motor uesed, it is necessary to establish an uphill road DB according to the threshold standard. Although road alignment information is a very important element in the basic information of the roads, there is no information currently on the longitudinal slope in the road digital map. The High Definition(HD) map which is being built as a preparation for the era of autonomous vehicles has the altitude value, unlike the existing standard node link system. However, the HD map is very insufficient because it has the altitude value only for some sections of the road network. This paper, hence, intends to propose a method to generate the road longitudinal slope using currently available data. We developed a method of computing the longitudinal slope by combining the digital elevation model and the standard link system. After creating an altitude at the road link point divided by 4m based on the Seoul road network, we calculated individual slope per unit distance of the road. After designating a representative slope for each road link, we have extracted the very steep road that cannot be climbed with personal mobility and the slippery roads that cannot be used during heavy snowfall. We additionally described errors in the altitude values due to surrounding terrain and the issues related to the slope calculation method. In the future, we expect that the road longitudinal slope information will be used as basic data that can be used for various convergence analyses.

Development of Time-based Safety Performance Function for Freeways (세부 집계단위별 교통 특성을 반영한 고속도로 안전성능함수 개발)

  • Kang, Kawon;Park, Juneyoung;Lee, Kiyoung;Park, Joonggyu;Song, Changjun
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.20 no.6
    • /
    • pp.203-213
    • /
    • 2021
  • A vehicle crash occurs due to various factors such as the geometry of the road section, traffic, and driver characteristics. A safety performance function has been used in many studies to estimate the relationship between vehicle crash and road factors statistically. And depends on the purpose of the analysis, various characteristic variables have been used. And various characteristic variables have been used in the studies depending on the purpose of analysis. The existing domestic studies generally reflect the average characteristics of the sections by quantifying the traffic volume in macro aggregate units such as the ADT, but this has a limitation that it cannot reflect the real-time changing traffic characteristics. Therefore, the need for research on effective aggregation units that can flexibly reflect the characteristics of the traffic environment arises. In this paper, we develop a safety performance function that can reflect the traffic characteristics in detail with an aggregate unit for one hour in addition to the daily model used in the previous studies. As part of the present study, we also perform a comparison and evaluation between models. The safety performance function for daily and hourly units is developed using a negative binomial regression model with the number of accidents as a dependent variable. In addition, the optimal negative binomial regression model for each of the hourly and daily models was selected, and their prediction performances were compared. The model and evaluation results presented in this paper can be used to determine the risk factors for accidents in the highway section considering the dynamic characteristics. In addition, the model and evaluation results can also be used as the basis for evaluating the availability and transferability of the hourly model.

Estimation of the Value of Green Cars Permission on Exclusive Bus Lane of Yeongdong Expressway Using a CVM Method (CVM을 이용한 영동고속도로 버스전용차로 내 친환경차 주행 허가에 대한 가치 추정)

  • Kim, Inyoung;Park, Sangmin;Kim, Kyung Hyun;Lee, Hwanpil;Yun, Ilsoo
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.20 no.2
    • /
    • pp.1-14
    • /
    • 2021
  • The exclusive bus lanes in the Yeongdong Expressway were implemented in the Singal to Yeoju section in 2017, but the capacity of both exclusive bus lanes and general-purpose lanes of the Yeongdong Expressway decreased and the travel time increased, reducing it to the Singal to Deokpyeong section. Therefore, it is necessary to increase the efficiency of exclusive bus lanes to revitalize public transportation and improve environmental problems. This study calculated the willingness to pay and the social benefits of permission for Green cars to drive on exclusive bus lanes in Yeongdong Expressway. A survey was conducted on two groups of Green car users and Expressway users, and the willingness to pay was estimated using the CVM method. As a result, the average WTP of Green car users were estimated to be 218.7(won/km·person), and that of Expressway users were estimated to be approximately 235.5(won/km·person). The direct benefits were estimated to be approximately 7.9 billion won for Green car users, and 8.5 billion won for Expressway users in 2019. Finally, the value of time saving was estimated to be approximately 8.0 billion won.