• 제목/요약/키워드: ITS & cpDNA regions

검색결과 22건 처리시간 0.018초

CpG Islands Detector: a Window-based CpG Island Search Tool

  • Kim, Ki-Bong
    • Genomics & Informatics
    • /
    • 제8권1호
    • /
    • pp.58-61
    • /
    • 2010
  • CpG is the pair of nucleotides C and G, appearing successively, in this order, along one DNA strand. It is known that due to biochemical considerations CpG is relatively rare in most DNA sequences. However, in particular subsequences, which are a few hundred to a few thousand nucleotides long, the couple CpG is more frequent. These subsequences, called CpG islands, are known to appear in biologically more significant parts of the genome. The ability to identify CpG islands along a chromosome will therefore help us spot its more significant regions of interest, such as the promoters or 'start' regions of many genes. In this respect, I developed the CpG islands search tool, CpG Islands Detector, which was implemented in JAVA to be run on any platform. The window-based graphical user interface of CpG Islands Detector may facilitate the end user to employ this tool to pinpoint CpG islands in a genomic DNA sequence. In addition, this tool can be used to highlight potential genes in genomic sequences since CpG islands are very often found in the 5' regions of vertebrate genes.

Complete Chloroplast DNA Sequence from a Korean Endemic Genus, Megaleranthis saniculifolia, and Its Evolutionary Implications

  • Kim, Young-Kyu;Park, Chong-wook;Kim, Ki-Joong
    • Molecules and Cells
    • /
    • 제27권3호
    • /
    • pp.365-381
    • /
    • 2009
  • The chloroplast DNA sequences of Megaleranthis saniculifolia, an endemic and monotypic endangered plant species, were completed in this study (GenBank FJ597983). The genome is 159,924 bp in length. It harbors a pair of IR regions consisting of 26,608 bp each. The lengths of the LSC and SSC regions are 88,326 bp and 18,382 bp, respectively. The structural organizations, gene and intron contents, gene orders, AT contents, codon usages, and transcription units of the Megaleranthis chloroplast genome are similar to those of typical land plant cp DNAs. However, the detailed features of Megaleranthis chloroplast genomes are substantially different from that of Ranunculus, which belongs to the same family, the Ranunculaceae. First, the Megaleranthis cp DNA was 4,797 bp longer than that of Ranunculus due to an expanded IR region into the SSC region and duplicated sequence elements in several spacer regions of the Megaleranthis cp genome. Second, the chloroplast genomes of Megaleranthis and Ranunculus evidence 5.6% sequence divergence in the coding regions, 8.9% sequence divergence in the intron regions, and 18.7% sequence divergence in the intergenic spacer regions, respectively. In both the coding and noncoding regions, average nucleotide substitution rates differed markedly, depending on the genome position. Our data strongly implicate the positional effects of the evolutionary modes of chloroplast genes. The genes evidencing higher levels of base substitutions also have higher incidences of indel mutations and low Ka/Ks ratios. A total of 54 simple sequence repeat loci were identified from the Megaleranthis cp genome. The existence of rich cp SSR loci in the Megaleranthis cp genome provides a rare opportunity to study the population genetic structures of this endangered species. Our phylogenetic trees based on the two independent markers, the nuclear ITS and chloroplast MatK sequences, strongly support the inclusion of the Megaleranthis to the Trollius. Therefore, our molecular trees support Ohwi's original treatment of Megaleranthis saniculifolia to Trollius chosenensis Ohwi.

cpDNA와 ITS 염기변이에 근거한 신품종 생장알로에 유전적 상관관계 (Genetic relationship of Aloe vera 'Saengjang', a new forma, based on cpDNA and ITS sequence variation)

  • 크리쉬나모르씨;장선일;황성수
    • 식물분류학회지
    • /
    • 제44권4호
    • /
    • pp.250-256
    • /
    • 2014
  • 본 연구는 3개의 색소체 matK, trnL-F, rbcL DNA 염기서열과 1개의 핵 ITS DNA 염기서열을 근거로 한국산 Aloe 3종 A. arborescens, A. vera 그리고 A. saponaria 등과 하나의 변이종 알로에의 유전적 상관관계를 알고자 수행되었다. 전체 2,420 bp 서열이 증폭되었다. 두 개의 삽인-결실(indel)이 trnL 지역에서 확인되었고, 또한 여러 개의 종 특이적인 염기자위가 전체 29개의 최소변이 정보지역(parsimonious informative site)에서 확인되었다. 조사된 한국산 4 종간에는 148 염기변이 지역이 있었으며, 세계산 Aloe 종들을 포함한 비교해서는 170개의 변이지역 중 75개의 최소변이 지역이 확인되었다. UPGMA를 이용한 phenogram에서 새로운 변이종 알로에는 A. vera와 가장 가깝게 유집되었다. 변이종 알로에는 아직까지 보고된 어떤 종류의 Aloe속내 종과 형태적 및 유전적으로 일치하지 않았다. 조사된 알로에 종들의 유집분석 결과는 기존의 연구결과와 일치하였다.

Phylogenetic analysis of Viburnum (Adoxaceae) in Korea using DNA sequences

  • CHOI, Yun Gyeong;YOUM, Jung Won;LIM, Chae Eun;OH, Sang-Hun
    • 식물분류학회지
    • /
    • 제48권3호
    • /
    • pp.206-217
    • /
    • 2018
  • The nucleotide sequences of the chloroplast rbcL, matK, and psbA-trnH and nuclear internal transcribed spacer (ITS) regions were determined from all species of Viburnum in Korea with multiple accessions to reconstruct the phylogeny and to evaluate the utility of the DNA sequences as DNA barcodes. The results of phylogenetic analyses of the cpDNA and ITS data are consistent with the findings of previous studies of Viburnum. Four morphologically closely related species, V. dilatatum, V. erosum, V. japonicum, and V. wrightii, were included in a strongly supported sister clade of V. koreanum and V. opulus. Viburnum odoratissimum is suggested to be sister to the V. dilatatum/V. koreanum clade in the cpDNA data, while V. odoratissimum is a sister to V. furcatum in the ITS data. Viburnum burejaeticum and V. carlesii are strongly supported as monophyletic. Our analyses of DNA barcode regions from multiple accessions of the species of Viburnum in Korea confirm that six out of ten species in Korea can be discriminated at the species level. The V. dilatatum complex can be separated from the remaining species according to molecular data, but the resolution power to differentiate a species within the complex is weak. This study suggests that regional DNA barcodes are useful for molecular species identification in the case of Viburnum when flowering or fruiting materials are not available.

Genome-wide DNA Methylation Profiles of Small Intestine and Liver in Fast-growing and Slow-growing Weaning Piglets

  • Kwak, Woori;Kim, Jin-Nam;Kim, Daewon;Hong, Jin Su;Jeong, Jae Hark;Kim, Heebal;Cho, Seoae;Kim, Yoo Yong
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제27권11호
    • /
    • pp.1532-1539
    • /
    • 2014
  • Although growth rate is one of the main economic traits of concern in pig production, there is limited knowledge on its epigenetic regulation, such as DNA methylation. In this study, we conducted methyl-CpG binding domain protein-enriched genome sequencing (MBD-seq) to compare genome-wide DNA methylation profile of small intestine and liver tissue between fast- and slow-growing weaning piglets. The genome-wide methylation pattern between the two different growing groups showed similar proportion of CpG (regions of DNA where a cytosine nucleotide occurs next to a guanine nucleotide in the linear sequence) coverage, genomic regions, and gene regions. Differentially methylated regions and genes were also identified for downstream analysis. In canonical pathway analysis using differentially methylated genes, pathways (triacylglycerol pathway, some cell cycle related pathways, and insulin receptor signaling pathway) expected to be related to growth rate were enriched in the two organ tissues. Differentially methylated genes were also organized in gene networks related to the cellular development, growth, and carbohydrate metabolism. Even though further study is required, the result of this study may contribute to the understanding of epigenetic regulation in pig growth.

Phylogenetic relationships of Coreanomecon (Papaveraceae: Papaveroideae), an endemic genus in Korea, using DNA sequences

  • YUN, Narae;OH, Sang-Hun
    • 식물분류학회지
    • /
    • 제48권4호
    • /
    • pp.289-300
    • /
    • 2018
  • Coreanomecon is a monotypic and endemic genus in Korea, distributed mainly in the southern regions. Coreanomecon is morphologically similar to Hylomecon by producing red latex, easily distinguished from Chelidonium, which produces yellow latex. Coreanomecon were merged into Hylomecon or Chelidonium depending on the authors. To understand the phylogenetic relationship of Coreanomecon, DNA sequences of chloroplast rbcL and matK and nuclear Internal Transcribed Spacer (ITS) regions were determined from the species of Papaveroideae (Papaveraceae) in Korea and analyzed with the Maximum Parsimony and Bayesian methods. Phylogenetic analyses of Papaveroideae suggest that Coreanomecon is sister to the clade of Chelidonium and Stylophorum in the ITS data and that it is sister to Hylomecon in the chloroplast (cpDNA) data. A constraining analysis using the Shimodaira-Hasegawa test (S-H test) suggested that the ITS data do not reject the sister relationship of Coreanomecon and Hylomecon. The S-H test also suggested that the cpDNA data is compatible with the placement of Coreanomecon as a sister to the clade of Chelidonium and Stylophorum. Although the conflicting phylogenetic results may stem from insufficient phylogenetic signals, they may also be associated with hybridization between Hylomecon and an ancestor of Stylophorum and Chelidonium. The results of this study suggest that Coreanomecon is a distinct lineage as an endemic genus, supporting the morphological data.

nrDNA ITS 및 엽록체 DNA 염기서열 분석에 의한 유통 한약재 오가피 판별 (Authentication of Traded Traditional Medicine Ogapi Based on Nuclear Ribosomal DNA Internal Transcribed Spacers and Chloroplast DNA Sequences)

  • 김정훈;변지희;박효섭;이정훈;이상원;차선우;조준형
    • 한국약용작물학회지
    • /
    • 제23권6호
    • /
    • pp.489-499
    • /
    • 2015
  • Background : Plants belonging to 5 species of the genus Eleutherococcus are currently distributed in the Korean peninsula. The traditional medicine 'Ogapi', derived from Eleutherococcus sessiliflorus and other related species, and 'Gasiogapi', derived from Eleutherococcus senticosus, are frequently mixed up and marketed. Therefore, accurated identification of their origins in urgently required. Methods and Results : Candidate genes from nuclear ribosomal DNA (nrDNA) and chloroplast DNA (cpDNA) of Eleutherococcus plants were analyzed. Whereas the nrDNA-internal transcribed spacer (ITS) regions were useful in elucidating the phylogenetic relationships among the plants, the cpDNA regions were not as effective. Therefore, a combined analysis with nrDNA-ITS was performed. Various combinations of nrDNA and matK were effective for discriminating among the plants. However, the matK and rpoC1 combination was ineffective for discriminating among some species. Based on these results, it was found that OG1, OG4, OG5, OG7, GS1, GS2, and GS3 were derived from E. sessiliflorus. In particular, it was confirmed that GS1, GS2, and GS3 were not derived from E. senticosus. However, more samples need to be analyzed because identification of the origins of OG2, OG3, OG6 and GS4 was not possible. Conclusion : The ITS2, ITS5a, and matK combination was the most effective in identifying the phylogenetic relationship among Eleutherococcus plants and traditional medicines based on Eleutherococcus.

한국산 황기의 분류학적 위치 및 유전적 분화 (Taxonomic position and genetic differentiation of Korean Astragalus mongholicus Bunge)

  • 최인수;김소영;최병희
    • 식물분류학회지
    • /
    • 제43권1호
    • /
    • pp.12-21
    • /
    • 2013
  • 본 연구에서는 제주황기(Astragalus nakaianus)의 분류학적 위치를 명확히 하고 한국산 재배황기(A. mongholicus cultivar)의 올바른 학명을 부여하기 위하여 외부형태형질과 ITS 그리고 5구간의 cp non-coding DNA의 염기서열을 조사하였다. 또한 9개의 마이크로새털라이트 마커를 이용하여 3집단 61개체에 대한 유전적 구조가 분석되었다. 그 결과, 남한산 재배황기와 A. mongholicus var. dahuricus 사이에서는 형태와 ITS 염기서열상에서 유의한 차이점이 없었다. 제주황기는 A. mongholicus var. mongholicus 그리고 var. dahuricus와 줄기의 습성, 식물체의 길이, 엽축의 길이, 소엽의 길이 등에서 형태적으로 차이를 보였다. ITS와 cp non-coding 구간 염기서열에서 제주황기는 황기(A. mongholicus)와 차이점을 보이지 않았지만, 마이크로새털라이트 분석에서 제주황기와 남한산 재배황기간에 뚜렷하게 구분된 구조를 보였다. 이러한 결과들을 보았을 때, 한국산 재배황기는 A. mongholicus var. dahuricus로 처리해야 하며 제주황기는 A. mongholicus의 변종으로서 취급되어야 한다.

PCR-based markers developed by comparison of complete chloroplast genome sequences discriminate Solanum chacoense from other Solanum species

  • Kim, Soojung;Park, Tae-Ho
    • Journal of Plant Biotechnology
    • /
    • 제46권2호
    • /
    • pp.79-87
    • /
    • 2019
  • One of wild diploid Solanum species, Solanum chacoense, is one of the excellent resources for potato breeding because it is resistant to several important pathogens, but the species is not sexually compatible with potato (S. tuberosum) causing the limitation of sexual hybridization between S. tuberosum and S. chacoense. Therefore, diverse traits regarding resistance from the species can be introgressed into potato via somatic hybridization. After cell fusion, the identification of fusion products is crucial with molecular markers. In this study, S. chacoense specific markers were developed by comparing the chloroplast genome (cpDNA) sequence of S. chacoense obtained by NGS (next-generation sequencing) technology with those of five other Solanum species. A full length of the cpDNA sequence is 155,532 bp and its structure is similar to other Solanum species. Phylogenetic analysis resulted that S. chacoense is most closely located with S. commersonii. Sequence alignment with cpDNA sequences of six other Solanum species identified two InDels and 37 SNPs specific sequences in S. chacoense. Based on these InDels and SNPs regions, four markers for distingushing S. chacoense from other Solanum species were developed. These results obtained in this research could help breeders select breeding lines and facilitate breeding using S. chacoense in potato breeding.

Taxonomic Review of the Genus Echinochloa in Korea (I): Inferred from Sequences of cpDNA and nrDNA

  • Lee, Jeongran;Kim, Chang-Seok;Lee, In-Yong
    • Weed & Turfgrass Science
    • /
    • 제3권3호
    • /
    • pp.183-189
    • /
    • 2014
  • The genus Echinochloa (L.) P. Beauv. comprised of approximately 30-40 species in the tropical and warm temperate regions of the world, including numerous interspecific and intraspecific types which make the genus difficult to identify. As an attempt to identify the species within the genus easier, the taxonomy of the genus Echinochloa, Poaceae in Korea was reviewed on the basis of sequencing data derived from nuclear ribosomal DNA internal transcribed spacer (ITS) and external transcribe spacer and chloroplast DNA trnL intron, trnL-F intergenic spacer and matK regions using a total of 46 accessions representing all the species in Korea. The results of maximum parsimony found separate lineage comprised of E. colona and E. frumentaceae which are not Korean species, but no resolution within Korean Echinochloa species, supporting the suggestion of Yamaguchi group that E. crus-galli, E. oryzoides, and E. esculenta should be considered to belong to the same species. However, the relationship between these three species and the other species, i.e. E. oryzicola should be better understood with more detail studies.