Browse > Article
http://dx.doi.org/10.5713/ajas.2014.14309

Genome-wide DNA Methylation Profiles of Small Intestine and Liver in Fast-growing and Slow-growing Weaning Piglets  

Kwak, Woori (C&K Genomics)
Kim, Jin-Nam (C&K Genomics)
Kim, Daewon (C&K Genomics)
Hong, Jin Su (Department of Agricultural Biotechnology, Seoul National University)
Jeong, Jae Hark (Department of Agricultural Biotechnology, Seoul National University)
Kim, Heebal (C&K Genomics)
Cho, Seoae (C&K Genomics)
Kim, Yoo Yong (Department of Agricultural Biotechnology, Seoul National University)
Publication Information
Asian-Australasian Journal of Animal Sciences / v.27, no.11, 2014 , pp. 1532-1539 More about this Journal
Abstract
Although growth rate is one of the main economic traits of concern in pig production, there is limited knowledge on its epigenetic regulation, such as DNA methylation. In this study, we conducted methyl-CpG binding domain protein-enriched genome sequencing (MBD-seq) to compare genome-wide DNA methylation profile of small intestine and liver tissue between fast- and slow-growing weaning piglets. The genome-wide methylation pattern between the two different growing groups showed similar proportion of CpG (regions of DNA where a cytosine nucleotide occurs next to a guanine nucleotide in the linear sequence) coverage, genomic regions, and gene regions. Differentially methylated regions and genes were also identified for downstream analysis. In canonical pathway analysis using differentially methylated genes, pathways (triacylglycerol pathway, some cell cycle related pathways, and insulin receptor signaling pathway) expected to be related to growth rate were enriched in the two organ tissues. Differentially methylated genes were also organized in gene networks related to the cellular development, growth, and carbohydrate metabolism. Even though further study is required, the result of this study may contribute to the understanding of epigenetic regulation in pig growth.
Keywords
DNA Methylation; MBD-seq; Epigenetic Profile; Weaning Piglet; Genome-wide Methylation Profile;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Dolinoy, D. C. 2008. The agouti mouse model: an epigenetic biosensor for nutritional and environmental alterations on the fetal epigenome. Nutr. Rev. 66:S7-S11.   DOI   ScienceOn
2 An, S., Y. Zheng, and T. Bleu. 2000. Sphingosine 1-phosphateinduced cell proliferation, survival, and related signaling events mediated by G protein-coupled receptors Edg3 and Edg5. J. Biol. Chem. 275:288-296.   DOI   ScienceOn
3 Andersson, L., C. S. Haley, H. Ellegren, S. A. Knott, M. Johansson, K. Andersson, L. Andersson-Eklund, I. Edfors-Lilja, M. Fredholm, and I. Hansson. 1994. Genetic mapping of quantitative trait loci for growth and fatness in pigs. Science 263:1771-1774.   DOI
4 Sleeman, M. W., K. E. Wortley, K.-M. V. Lai, L. C. Gowen, J. Kintner, W. O. Kline, K. Garcia, T. N. Stitt, G. D. Yancopoulos, S. J. Wiegand, and D. J. Glass. 2005. Absence of the lipid phosphatase SHIP2 confers resistance to dietary obesity. Nat. Med. 11:199-205.   DOI   ScienceOn
5 Su, J., Y. Wang, X. Xing, J. Liu, and Y. Zhang. 2014. Genomewide analysis of DNA methylation in bovine placentas. BMC Genomics 15:12.   DOI   ScienceOn
6 Trimarchi, J. M., B. Fairchild, J. Wen, and J. A. Lees. 2001. The E2F6 transcription factor is a component of the mammalian Bmi1-containing polycomb complex. Proc. Natl. Acad. Sci. 98:1519-1524.   DOI
7 Suzuki, M. M. and A. Bird. 2008. DNA methylation landscapes: Provocative insights from epigenomics. Nat. Rev. Genet. 9:465-476.
8 The ENCODE Project Consortium. 2004. The ENCODE (ENCyclopedia of DNA elements) project. Science 306:636-640.   DOI   ScienceOn
9 The ENCODE Project Consortium. 2011. A user's guide to the encyclopedia of DNA elements (ENCODE). PLoS Biol. 9(4):e1001046.   DOI   ScienceOn
10 Xu, R.-J. 1996. Development of the newborn GI tract and its relation to colostrum/milk intake: A review. Reprod. Fertil. Dev. 8:35-48.   DOI   ScienceOn
11 Meyer, L. R., A. S. Zweig, A. S. Hinrichs, D. Karolchik, R. M. Kuhn, M. Wong, C. A. Sloan, K. R. Rosenbloom, G. Roe, and B. Rhead et al. 2013. The UCSC Genome Browser database: extensions and updates 2013. Nucl. Acids Res. 41:D64-D69.   DOI
12 Saltiel, A. R. and C. R. Kahn. 2001. Insulin signalling and the regulation of glucose and lipid metabolism. Nature 414:799-806.   DOI   ScienceOn
13 Mrode, R. and B. Kennedy. 1993. Genetic variation in measures of food efficiency in pigs and their genetic relationships with growth rate and backfat. Anim. Prod. 56:225-225.   DOI   ScienceOn
14 Pages, H. 2009. BSgenome: Infrastructure for Biostrings-based genome data packages. R package version 1.32.0
15 Purohit, A., S. H. Tynan, R. Vallee, and S. J. Doxsey. 1999. Direct interaction of pericentrin with cytoplasmic dynein light intermediate chain contributes to mitotic spindle organization. J. Cell Biol. 147:481-492.   DOI
16 Roberts, R., V. A. Sciorra, and A. J. Morris. 1998. Human type 2 phosphatidic acid phosphohydrolases. Substrate specificity of the type 2a, 2b, and 2c enzymes and cell surface activity of the 2a isoform. J. Biol. Chem. 273:22059-22067.   DOI   ScienceOn
17 Rubin, C.-J., H.-J. Megens, A. M. Barrio, K. Maqbool, S. Sayyab, D. Schwochow, C. Wang, O . Carlborg, P. Jern, and C. B. Jorgensen et al. 2012. Strong signatures of selection in the domestic pig genome. Proc. Natl. Acad. Sci. 109:19529-19536.   DOI   ScienceOn
18 Salmon-Divon, M., H. Dvinge, K. Tammoja, and P. Bertone. 2010. PeakAnalyzer: genome-wide annotation of chromatin binding and modification loci. BMC Bioinformatics 11:415.   DOI   ScienceOn
19 Siegfried, Z., S. Eden, M. Mendelsohn, X. Feng, B.-Z. Tsuberi, and H. Cedar. 1999. DNA methylation represses transcription in vivo. Nat. Genet. 22:203-206.   DOI   ScienceOn
20 Hazel, L. N., M. L. Baker, and C. F. Reinmiller. 1943. Genetic and environmental correlations between the growth rates of pigs at different ages. J. Anim. Sci. 2:118-128.
21 Hu, Y., H. Xu, Z. Li, X. Zheng, X. Jia, Q. Nie, and X. Zhang. 2013. Comparison of the genome-wide DNA methylation profiles between fast-growing and slow-growing broilers. PloS one 8(2):e56411.
22 Klose, R. J. and A. P. Bird. 2006. Genomic DNA methylation: the mark and its mediators. Trends Biochem. Sci. 31:89-97.   DOI   ScienceOn
23 Langmead, B. and S. L. Salzberg. 2012. Fast gapped-read alignment with Bowtie 2. Nat. Methods 9:357-359.   DOI   ScienceOn
24 Li, E., C. Beard, and R. Jaenisch. 1993. Role for DNA methylation in genomic imprinting. Nature 366:362-365.   DOI   ScienceOn
25 Lorincz, M. C., D. R. Dickerson, M. Schmitt, and M. Groudine. 2004. Intragenic DNA methylation alters chromatin structure and elongation efficiency in mammalian cells. Nat. Struct. Mol. Biol. 11:1068-1075.   DOI   ScienceOn
26 Li, H., B. Handsaker, A. Wysoker, T. Fennell, J. Ruan, N. Homer, G. Marth, G. Abecasis, and R. Durbin. 2009. The sequence alignment/map format and SAMtools. Bioinformatics 25:2078-2079.   DOI   ScienceOn
27 Li, Q., N. Li, X. Hu, J. Li, Z. Du, L. Chen, G. Yin, J. Duan, H. Zhang, Y. Zhao, J. Wang, and N. Li. 2011. Genome-wide mapping of DNA methylation in chicken. PLoS One 6(5):e19428.   DOI   ScienceOn
28 Lo, L., D. McLaren, F. McKeith, R. Fernando, and J. Novakofski. 1992. Genetic analyses of growth, real-time ultrasound, carcass, and pork quality traits in Duroc and Landrace pigs: II. Heritabilities and correlations. J. Anim. Sci. 70:2387-2396.
29 Andrews, S. 2010. FastQC: A quality control tool for high throughput sequence data. Reference Source. http://www.bioinformatics.babraham.ac.uk/projects/fastqc/Accessed Month, Date, Year.
30 Martorell, R., C. Yarbrough, A. Lechtig, H. Delgado, and R. E. Klein. 1977. Genetic-environmental interactions in physical growth. Acta Paediatr. Scand. 66:579-584.   DOI
31 Adada, M., D. Canals, Y. A. Hannun, and L. M. Obeid. 2013. Sphingosine-1-phosphate receptor 2. FEBS J. 280:6354-6366.   DOI   ScienceOn
32 Bird, A. 2002. DNA methylation patterns and epigenetic memory. Genes Dev. 16:6-21.   DOI   ScienceOn
33 Birney, E., J. A. Stamatoyannopoulos, A. Dutta, R. Guigo, T. R. Gingeras, E. H. Margulies, Z. Weng, M. Snyder, E. T. Dermitzakis, and R. E. Thurman. 2007. Identification and analysis of functional elements in 1% of the human genome by the ENCODE pilot project. Nature 447:799-816.   DOI   ScienceOn
34 Bolger, A. M., M. Lohse, and B. Usadel. 2014. Trimmomatic: A flexible trimmer for Illumina Sequence Data. Bioinformatics doi:10.1093/bioinformatics/btu170   DOI   ScienceOn
35 Estelle, J., F. Gil, J. Vazquez, R. Latorre, G. Ramirez, M. C. Barragan, J. M. Folch, J. L. Noguera, M. A. Toro, and M. Perez-Enciso. 2008. A quantitative trait locus genome scan for porcine muscle fiber traits reveals overdominance and epistasis. J. Anim. Sci. 86:3290-3299.   DOI   ScienceOn
36 Bourdon, R. and J. Brinks. 1982. Genetic, environmental and phenotypic relationships among gestation length, birth weight, growth traits and age at first calving in beef cattle. J. Anim. Sci. 55:543-553.
37 Chavez, L., M. Lienhard, and J. Dietrich. 2013. MEDIPS: (MeD)IP-seq data analysis. R package version 1.14.0.
38 Fritsche, L., C. Weigert, H.-U. Haring, and R. Lehmann. 2008. How insulin receptor substrate proteins regulate the metabolic capacity of the liver -implications for health and disease. Curr. Med. Chem. 15:1316-1329.   DOI   ScienceOn