Browse > Article
http://dx.doi.org/10.1007/s10059-009-0047-6

Complete Chloroplast DNA Sequence from a Korean Endemic Genus, Megaleranthis saniculifolia, and Its Evolutionary Implications  

Kim, Young-Kyu (School of Life Sciences, Korea University)
Park, Chong-wook (School of Biological Sciences, Seoul National University)
Kim, Ki-Joong (School of Life Sciences, Korea University)
Abstract
The chloroplast DNA sequences of Megaleranthis saniculifolia, an endemic and monotypic endangered plant species, were completed in this study (GenBank FJ597983). The genome is 159,924 bp in length. It harbors a pair of IR regions consisting of 26,608 bp each. The lengths of the LSC and SSC regions are 88,326 bp and 18,382 bp, respectively. The structural organizations, gene and intron contents, gene orders, AT contents, codon usages, and transcription units of the Megaleranthis chloroplast genome are similar to those of typical land plant cp DNAs. However, the detailed features of Megaleranthis chloroplast genomes are substantially different from that of Ranunculus, which belongs to the same family, the Ranunculaceae. First, the Megaleranthis cp DNA was 4,797 bp longer than that of Ranunculus due to an expanded IR region into the SSC region and duplicated sequence elements in several spacer regions of the Megaleranthis cp genome. Second, the chloroplast genomes of Megaleranthis and Ranunculus evidence 5.6% sequence divergence in the coding regions, 8.9% sequence divergence in the intron regions, and 18.7% sequence divergence in the intergenic spacer regions, respectively. In both the coding and noncoding regions, average nucleotide substitution rates differed markedly, depending on the genome position. Our data strongly implicate the positional effects of the evolutionary modes of chloroplast genes. The genes evidencing higher levels of base substitutions also have higher incidences of indel mutations and low Ka/Ks ratios. A total of 54 simple sequence repeat loci were identified from the Megaleranthis cp genome. The existence of rich cp SSR loci in the Megaleranthis cp genome provides a rare opportunity to study the population genetic structures of this endangered species. Our phylogenetic trees based on the two independent markers, the nuclear ITS and chloroplast MatK sequences, strongly support the inclusion of the Megaleranthis to the Trollius. Therefore, our molecular trees support Ohwi's original treatment of Megaleranthis saniculifolia to Trollius chosenensis Ohwi.
Keywords
base substitution rate; chloroplast genome; endangered genus in Korea; indel mutation; Megalreanthis; phylogeny; positional effect; simple sequence repeat; Trollius;
Citations & Related Records

Times Cited By Web Of Science : 8  (Related Records In Web of Science)
연도 인용수 순위
  • Reference
1 Doyle, J.J., Davis, J.I., Soreng, R.J., Garvin, D., and Anderson, M.J. (1992). Chloroplast DNA inversions and the origin of the grass family (Poaceae). Proc. Natl. Acad. Sci. USA 89, 7722-7726   DOI   PUBMED   ScienceOn
2 Hachtel, W., Neuss, A., and Stein, J.V. (1991). A chloroplast DNA inversion marks an evolutionary spilt in the genus Oenothera. Evolution 45, 1050-1052   DOI   ScienceOn
3 Hoot, S.B., and Palmer, J.D. (1994). Structural rearrangements, including parallel inversions, within the chloroplast genome of Anemone and related genera. J. Mol. Evol. 38, 274-281   PUBMED
4 Jansen, U. (1968). Serologische Beitrage zur Systematik der Ranunculaceae. Bot. Jahrb. 88, 269-310
5 Jansen, R.K., and Palmer, J.D. (1987). A chloroplast DNA inversion marks an ancient evolutionary split in the sunflower family (Asteraceae). Proc. Natl. Acad. Sci. USA 84, 5818-5822   DOI   ScienceOn
6 Kim, M., and Lee, S. (1987). Palynotaxonomic relationship of Megaleranthis saniculifolia Ohwi to the relative species. Korean J. Plant Taxon. 17, 13-20   DOI
7 Lee, S. (1992). Palynological relationships among Calathodes and its relative genera. Korean. J. Pl. Taxon 22, 23-31
8 Lee, Y.N., and Yeau, S.H. (1985) Taxonomic characters of Meglaeranthis saniculifolia Ohwi (Ranunculaceae). Korean J. Plant Taxon. 15, 127-131   DOI
9 Lee, H.L., Jansen, R.K., Chumley, T.W., and Kim, K.J. (2007). Gene relocations within chloroplast genomes of Megaleranthis saniculifolia (Oleaceae) are due to multiple, overlapping inversions. Mol. Biol. Evol. 24, 1161-1180   DOI   ScienceOn
10 Swofford, D.L. (2002). PAUP: phylogenetic analysis using parsimony and other methods, ver. 4.0. (Sunderland, USA, Sinauer Assoc.)
11 Tamura, M. (1966). Morphology, ecology, and phylogeny of the Ranunculaceae VI. Sci. Rep. Osaka Univ. 15, 13-3
12 Tamura, M. (1995). Phylogeny and classification of the Ranunculaceae. Plant Syst. Evol. 9, 201-206
13 Saitou, N., and Nei, M. (1985). The neighbor-joining method: A new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4, 406-425
14 Wolfe, K.H., Gouy, M., Yang, Y.W., Sharp, P., and LI, W.H. (1989). Date of the monocot-dicot divergence estimated from chloroplast DNA sequence data. Proc. Natl. Acad. Sci. USA 86, 6201-6205   DOI   ScienceOn
15 Johansson, J.T., and Jansen, R.K. (1991). Chloroplast DNA variation among the five species of Ranunculaceae : structure, sequence divergence, and phylogenetic relationships. Plant Syst. Evol. 178, 9-25   DOI
16 Lee, S., and Blackmore, S. (1992). A palynotaxonomic study of the genus Trollius. Grana 31, 81-100   DOI
17 Ohwi, J. (1935). Negaleranthis, genus novum Ranunculacearum. Acta Phytotax. Geobot, 4, 130-131
18 Palmer, J.D., Osorio, B., Aldrich, J., and Thompson, W.F. (1987b). Chloroplast DNA evolution among legumes: Loss of a large inverted repeat occurred prior to other sequence rearrangements. Curr. Genet. 11, 275-286   DOI
19 Lidholm, J., and Gustafsson, P. (1991). A three-step model for the rearrangement of chloroplast Trnk-psbA region of the gymnosperm Pinus contorta. Nucleic Acids Res. 19, 2881-2887   DOI   ScienceOn
20 Powell, W., Morgante, M., Andre, C., Hanafey, M., Vogel, J., Tingey, S., and Rafalski, A. (1996). The utility of RFLP, RAPD, AFLP and SSRP (microsatellite) markers for germplasm analysis? Mol. Breed. 2, 225-238   DOI
21 Kumar, S., Tamura, K., Jakobsen, I., and Nei, M. (2001). MEGA2 : molecular evolutionary genetics analysis. ver. 2.1. Bioinformatics 17, 1244-1245   DOI   ScienceOn
22 Lee, S. (1990). On the taxonomic position of Trollius chosensisOwhi (Ranunculaceae). Korean. J. Pl. Taxon. 20, 1-8   DOI
23 Park, C.-W., Yeau, S.H., Chang, C.S., Lee, H.W., and Sun, B.Y. (2007). Ranunculaceae. In The Genera of Vascular Plants of Korea. C.-W. Park, ed. (Seoul, Korea: Academy Publ. Co.), pp. 165-205
24 Ro, K.E., Keener, C.S., and Mcpheron, B.A. (1997). Molecular phylogenetic study of the Ranunculaceae: utility of the nuclear 26S Ribosomal DNA in inferring intrafamilial relationships. Mol. Phylog. Evol. 8, 117-127
25 Shinozaki, K., Ohem, M., Tanaka, M., Wakasugi, T., Hayashida, N., Matsubayashi, T., Zaita, N., Chunwongse, J., Obokata, J., Shinozaki, K.Y., et al. (1986). The complete nucleotide sequence of tobacco chloroplast genome: its gene organization and expression. EMBO J. 5, 2043-2049
26 Kurtz, S., Choudhuri, J.V., Ohlebusch, E., Schleiermacher, C., Stoye, J., and Giegerich, R. (2001). REPuter : the manifold applications of repeat analysis on a genomic scale. Nucleic Acids Res. 29, 4633-4642   DOI   ScienceOn
27 Raubeson, L.A., and Jansen, R.K. (2005). Chloroplast genomes of plants. In Diversity and Evolution of Plants-genotypic Variation in Higher Plants. R. Henry, ed. (Oxfordshire, United Kingdom: CABI Publishing), pp.45-68
28 Doyle, J.J., and Doyle, J.A. (1987). A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem. Bull. 19, 11-15
29 Higgins, D.G., Thompson, J.D., and Gibson, T.J. (1996). Using CLUSTAL for multiple sequence alignments. Methods Enzymol. 266, 383-402   DOI   PUBMED
30 Raubeson, L.A., Peery, R., Chumley, T.W., Dziubek, C., Fourcade, H.M., Boore, J.L., and Jansen, R.K. (2007). Comparative chloroplast genomics analyses including new sequences from the angiosperms Nuphar advena and Ranunculus macranthus. BMC Genomics 8, 174   DOI
31 Saski, C., Lee, S.B., Daniell, H., Wood, T.C., Tomkins, J., Kim, H.G., and Jansen, R.K. (2005). Complete chloroplast genome sequences of Glycine max and comparative analyses with other legume genomes. Plant Mol. Biol. 59, 309-322   DOI   ScienceOn
32 Hiratsuka, J., Shimada, H., Whittier, R., Ishibashi, T., Sakamoto, M., Mori, M., Kondo, C., Honji, Y., Shun, C.R., Meng, B.Y., et al. (1989). The complete sequence of the rice (Orueza sativa chloroplast genome: intermolecular recombination between distinct tRNA genes accounts for a major plastid DNA inversion during the evolution of the cereals. Mol. Gen. Genet. 217, 185-194   DOI
33 Kanno, A., and Hirai, A. (1993). A transcription map of the chloroplast genome from rice (Oryza sativa), Curr. Genet. 23, 166-174   DOI   ScienceOn
34 Knox, E.B., and Palmer, J.D. (1999). The chloroplast genome arrangement of Lovelia thuliniana (Lobeliaceae): expansion of the inverted repeat in an ancestor of the Campanulales. Plant Syst. Evol. 214, 49-64   DOI   ScienceOn
35 Jensen, U., Hoot, S.B., Johansson, J.T., and Kosuge, K. (1995). Systematics and phylogeny of the Ranunculaceae, a revised family concept on the basis of molecular data. Plant Syst. Evol. 9, 273-280   DOI
36 Provan, J., Corbett, G., Waugh, R., McNicol, J.W., Morgante, M., and Powell, W. (1996). DNA fingerprints of rice (Oryza sativa) obtained from hypervariable simple sequence repeats. Proc. R. Soc. London Ser. B 263, 1275-1281   DOI   ScienceOn
37 Tamura, M. (1993). Ranunculaceae. In The Families and Genera of Vascular Plants: Flowering Plants-Dicotyledons, Vol. II. K. Kubitski, J. G. Rohwer, and V. Bittrich, eds. (Berlin: Germany, Springer Verlag), pp. 563-583
38 Cosner, M.E., Jansen, R.K., Palmer, J.D., and Downie, S.R. (1997). The highly rearranged chloroplast genome of Trachelium caeruleum (Campanulaceae): multiple inversions, inverted repeat expansion and contraction, transposition, insertions/deletions, and several repeat families. Curr. Gennet. 31, 419-429   DOI   ScienceOn
39 Hermann, R.G., Oelmuller, R., Bichler, J., Schneiderbauer, A., Steppuhn, J., Wedel, N., Tyagi, A.K., and Westhoff, P. (1991). The thylakoid membrane of higher plants: genes, their expression and interaction. In Plant Molecular Biology 2, R.G. Hermann, and B. Larkins, eds., (New York, USA: Plaenum Press), pp. 411-427
40 Milligan, B.G., Hampton, J.N., and Palmer, J.D. (1989). Dispersed repeats and structural reorganization in subclover chloroplast DNA. Mol. Biol. Evol. 6, 355-368   PUBMED
41 Hoot, S.B. (1991). Phylogeny of the Ranunculaceae based on epidermal microcharacters and macromophology. Syst. Bot. 16, 741-755   DOI   ScienceOn
42 Palmer, J.D., Nugent, J.M., and Herbon, L.A. (1987a). Unusual structure of geranium chloroplast DNA: A triple-sized inverted repeat, extensive gene duplications, multiple inversions, and two repeat families. Proc. Natl. Acad. Sci. USA 84, 769-77   DOI   ScienceOn
43 Sambrook, J., Fritsch, E.F., and Maniatis, R. (1989). Molecular Cloning, a laboratory manual, the 2nd ed. (New York: USA, Cold Spring Harbor Lab Press)
44 Farris, J.S., Albert, V.A., Kallersjo, M., Lipscomb, D., and Kluge, A.G. (1996). Parsimony jackknifing out performs neighborjoining. Cladistics 12, 94-124
45 Kim, K.J., and Lee, H.L. (2004). Complete chloroplast genome sequences from Korean ginseng (Panax schinseng Nees) and comparative analysis of sequence evolution among 17 vascular plants. DNA Res. 11, 247-261   DOI   ScienceOn
46 Strauss, S.H., Palmer, J.D., Howe, G.T., and Doerksen, A.H. (1998). Chloroplast genomes of two conifers lack a large inverted repeat and are extensively rearranged. Proc. Natl. Acad. Sci. USA 85, 3898-3902   DOI   ScienceOn
47 Lee, S. (1989). Palynological evidence for the relationships between Megaleranthis Saniculifolia and Trollius species. Pollen Éí Spores 31, 173-185
48 Palmer, J.D., and Thompson, W.F. (1981). Rearrangements in the chloroplast genomes of mung bean and pea. Proc. Natl. Acad. Sci. USA 78, 5533-5537   DOI   ScienceOn
49 Palmer, J.D. (1990). Contrasting modes and tempos of genome evolution in land plant organelles. Trends Genet. 6, 115-120   DOI   PUBMED
50 Palmer, J.D. (1991). Plastid chromosomes: structure and evolution. In Cell Culture and Somatic Cell Genetics in Plants, Vol. 7A, The Molecular biology of Plastids. I.K. Vasil, and L. Bogorad, eds. (San Diego, USA: Academic Press), pp. 5-53
51 Santisuk, T. (1979). A palynological study of the tribe Ranunculeae. Opera Bot. 48, 1-74
52 Wyman, S.K., Jansen, R.K., and Boore, J.L. (2004). Automatic annotation of organellar genomes with DOGMA. Bioinformatics 20, 3252-3255   DOI   ScienceOn
53 Cosner, M.E., Raubeson, L.A., and Jansen, R.K. (2004). Chloroplast DNA rearrangements in Campanulaceae: phylogenetic utility of highly rearranged genomes. BMC Evol. Biol. 4, 27   DOI   ScienceOn
54 Leppik, E.E. (1964). Floral evolution in Ranunculaceae. Iowa State Coll. Sci. 39, 1-104
55 Ogihara, Y., Terachi, T., and Sasakuma, T. (1988). Intramolecular recombination of chloroplast genome mediated by a short directrepeat sequence in wheat species. Proc. Natl. Acad. Sci. USA 85, 8573-8577   DOI   ScienceOn
56 Kim, K.J., Choi, K.S., and Jansen, R.K. (2005). Two chloroplast DNA inversions originated simultaneously during early evolution in the sunflower family. Mol. Biol. Evol. 22, 1783-179   DOI   ScienceOn
57 Shinozaki, K., Hayashida, N., and Sugiura, M. (1988). Nicotiana chloroplast genes for components of the photosynthetic apparatus. Photosyn. Res. 18, 7-31   DOI   ScienceOn
58 Lee, Y.N. (2007). Flora of Korea, the 2nd ed. (Seoul, Korea: Kyohaksa)
59 Jansen, U. (1966). Die Verwandtschaftverhaltnisse innerhalb der Ranunculaceae aus serologischer Sicht. Ber. Deutsch. Bot. Ges 79, 407-412
60 Tarnura, M. (1990). A new classification of the family Ranunculaceae 1. Acta. Phytotax. Geobot. 41, 93-101
61 Yuan, Q., and Yang, Q.E. (2006). Tribal relationships of Beesia, Eranthis and seven other genera of Ranunculaceae: evidence from cytological characters. Bot. J. Linn. Soc. 150, 267-289   DOI   ScienceOn
62 Ohwi, J. (1937). Symbolae ad floram Asiae orientalis 15. Acta Phytotax. Geobot. 6, 145-153
63 Cato, S.A., and Richardson, T.E. (1996). Inter- and intra-specific polymorphism at chloroplast SSR loci and the inheritance of plastids Pinus radiata D. Don. Theor. Appl. Genet. 93, 587-592   DOI   ScienceOn
64 Jansen, R.K., Cai, Z., Raubeson, L.A., Daniell, H., dePamphilis, C.W., Mack, J.L., Muller, K.F., Bellian, M.G., Haberle, R.C., Hansen, A.K., et al. (2007). Analysis of 81 genes from 64 plastid genomes resolves relationships in angiosperms and identifies genome-scale evolutionary patterns. Proc. Natl. Acad. Sci. USA 104, 19369-19374   DOI   ScienceOn