• 제목/요약/키워드: ITO thin films

검색결과 528건 처리시간 0.029초

유리기판 위에 증착한 PZT 박막의 전기적 특성에 관한 연구 (A Study on Electrical Properties of PZT Thin Films Deposited on the Glass Substrates)

  • 정규원;주필연;박영;이준신;송준태
    • 대한전기학회논문지:전기물성ㆍ응용부문C
    • /
    • 제50권1호
    • /
    • pp.24-29
    • /
    • 2001
  • PZT thin films(4000A) have prepared onto 1737 corning glass and ITO coated glass substrates with a RF magnetron sputtering system using Pb_{1.05}(Zr_{0.52},Ti_{0.48})O_3$ceramic target, Electrical properties of PZT thin film deposited after ITO coated glass were P${\gamma}$ was decreased by 25% after 109cycles, respectively. With the RTA treatment duration and temperature increased, the crystallization of PZT thin films were enhanced, however, the leakage current density became higher. The leakage current mechanism was found to be space charge conduction by the defects and oxygen vacancies existing in PZT and PZT/bottom electrode interfaces.

  • PDF

RF magnetron sputtering으로 증착한 GZO 박막의 열 처리 온도 변화에 따른 구조적, 광학적, 전기적 특성 (Structural, Optical and Electrical Properties of GZO Thin Film for Annealing Temperature Change by RF Magnetron Sputtering System)

  • 이윤승;김홍배
    • 반도체디스플레이기술학회지
    • /
    • 제15권4호
    • /
    • pp.41-45
    • /
    • 2016
  • ITO/GZO double layered thin films were prepared on transparent glass substrates. Ga-doped ZnO(GZO) films were deposited by RF magnetron sputtering using an ZnO:Ga (98: 2 wt%) target. The post deposition annealing process was conducted for 30 minutes at different temperature of 100, 200, 300 and $400^{\circ}C$, respectively. As increase annealing temperature, ITO/GZO double layered thin films show the increment of the prefer orientation of ZnO diffraction peak (002) in the XRD patterns. We obtained Ga-doped ZnO thin films with a lowest resistivity of $1.84{\times}10^{-4}{\Omega}-cm$ at $400^{\circ}C$ and transparency above 80% in visible ranges. The figure of merit obtained in this study means that ITO/GZO double layered thin films which annealed at $400^{\circ}C$ have the highest optoelectrical performance in this study.

Effect of a TiO2 Buffer Layer on the Properties of ITO Films Prepared by RF Magnetron Sputtering

  • Kim, Daeil
    • Transactions on Electrical and Electronic Materials
    • /
    • 제14권5호
    • /
    • pp.242-245
    • /
    • 2013
  • Sn-doped $In_2O_3$ (ITO) thin films were prepared by radio frequency magnetron sputtering without intentional substrate heating on bare glass and $TiO_2$-deposited glass substrates to investigate the effect of a $TiO_2$ buffer layer on the electrical and optical properties of ITO films. The thicknesses of $TiO_2$ and ITO films were kept constant at 5 and 100 nm, respectively. As-deposited ITO single layer films show an optical transmittance of 75.9%, while $ITO/TiO_2$ bi-layered films show a lower transmittance of 76.1%. However, as-deposited $ITO/TiO_2$ films show a lower resistivity ($9.87{\times}10^{-4}{\Omega}cm$) than that of ITO single layer films. In addition, the work function of the ITO film is affected by the $TiO_2$ buffer layer, with the $ITO/TiO_2$ films having a higher work-function (5.0 eV) than that of the ITO single layer films. The experimental results indicate that a 5-nm-thick $TiO_2$ buffer layer on the $ITO/TiO_2$ films results in better performance than conventional ITO single layer films.

TOLED 용 ITO 음전극 제작 특성

  • 김현웅;금민종;서화일;김광선;김경환
    • 한국반도체및디스플레이장비학회:학술대회논문집
    • /
    • 한국반도체및디스플레이장비학회 2005년도 추계 학술대회
    • /
    • pp.106-109
    • /
    • 2005
  • The ITO thin films for Top-Emitting Organic Light Emitting Devices (TOLEDs) were prepared on cell(LiF/Organic Layer/Bottom Electrode : ITO ) by FTS (Facing Targets Sputtering) system under different sputtering conditions which were varying gas pressure, input current and distance of target to target($D_{T-T}$). As a function of sputtering conditions, I-V characteristics of prepared ITO thin films on cell were measured by 4156A (HP). In the results, when the In thin films were deposited at $D_{T-T}$ 70mm and working pressure 1mTorr, the leakage current of ITO/cell was about 11[V] and 5E-6[$mA/cm^2$].

  • PDF

대향 타겟식 스퍼터링으로 증착한 ITO 박막의 Bending에 의한 특성 분석 (The investigation of ITO thin film prepared by Facing Targets Sputtering (FTS) by Bending)

  • 김상모;임유승;금민종;최명규;김경환
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2007년도 추계학술대회 논문집
    • /
    • pp.438-439
    • /
    • 2007
  • In this study, we prepared ITO thin film on the polycarbonate(PC) substrate by using Facing Targets sputtering (FTS) system. After the external bending force was applied to as-deposited ITO thin films with fixed face-plate distance (L), we investigated how properties of those change. As a result, the crack density of films was increasing as bending frequency increased. In accordance with crack distribution, we observed that the resistivity value of ITO thin film increased.

  • PDF

산소 유입 없이 RF 스퍼터로 증착한 고품질 ITO 박막의 두께와 열처리 온도에 따른 박막의 특성 변화 (Effects of Film Thickness and Post-Annealing Temperature on Properties of the High-Quality ITO Thin Films with RF Sputtering Without Oxygen)

  • 성지하;김형민;신성민;김경환;홍정수
    • 한국전기전자재료학회논문지
    • /
    • 제37권3호
    • /
    • pp.253-260
    • /
    • 2024
  • In this study, ITO thin films were fabricated on a glass substrate at different thicknesses without introducing oxygen using RF sputtering system. The structural, electrical, and optical properties were evaluated at various thicknesses ranging from 50 to 300 mm. As the thickness of deposited ITO thin film become thicker from 50 to 100 mm, carrier concentration, mobility, and band gap energy also increased while the resistivity and transmittance decreased in the visible light region. When the film thickness increased from 100 to 300 mm, the carrier concentration, mobility, and band gap energy decreased while the resistivity and transmittance increased. The optimum electrical properties were obtained for the ITO film 100 nm. After optimizing the thickness, the ITO thin films were post-annealed at different temperatures ranging from 100 to 300℃. As the annealing temperature increased, the ITO crystal phase became clearer and the grain size also increased. In particular, the ITO thin film annealed at 300℃ indicated high carrier concentration (4.32 × 1021 cm-3), mobility (9.01 cm2/V·s) and low resistivity (6.22 × 10-4 Ω·cm). This means that the optimal post-annealing temperature is 300℃ and this ITO thin film is suitable for use in solar cells and display application.

Work Function Modification of Indium Tin Oxide Thin Films Sputtered on Silicon Substrate

  • Oh, Gyujin;Kim, Eun Kyu
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2014년도 제46회 동계 정기학술대회 초록집
    • /
    • pp.351.2-351.2
    • /
    • 2014
  • Indium tin oxide (ITO) has a lot of variations of its properties because it is basically in an amorphous state. Therefore, the differences in composition ratio of ITO can result in alteration of electrical properties. Normally, ITO is considered as transparent conductive oxide (TCO), possessing excellent properties for the optical and electrical devices. Quantitatively, TCO has transparency over 80 percent within the range of 380nm to 780nm, which is visible light although its specific resistance is less than $10-3{\Omega}/cm$. Thus, the solar cell is the best example for which ITO has perfectly matching profile. In addition, when ITO is used as transparent conductive electrode, this material essentially has to have a proper work function with contact materials. For instance, heterojunction with intrinsic thin layer (HIT) solar cell could have both front ITO and backside ITO. Because each side of ITO films has different type of contact materials, p-type amorphous silicon and n-type amorphous silicon, work function of ITO has to be modified to transport carrier with low built-in potential and Schottky barrier, and approximately requires variation from 3 eV to 5 eV. In this study, we examine the change of work function for different sputtering conditions using ultraviolet photoelectron spectroscopy (UPS). Structure of ITO films was investigated by spectroscopic ellipsometry (SE) and scanning electron microscopy (SEM). Optical transmittance of the films was evaluated by using an ultraviolet-visible (UV-Vis) spectrophotometer

  • PDF

R.F. magnetron sputtering 법으로 제작한 ITO 박막의 특성 (Properties of ITO thin films fabricated by R.F magnetron sputtering)

  • 정운조;박계춘;유용택
    • 센서학회지
    • /
    • 제4권2호
    • /
    • pp.51-57
    • /
    • 1995
  • Indium Tin Oxide (ITO) 박막을 $In_{2}O_{3}$(90mol%) : $SnO_{2}$(10mo1%)의 조성비를 가지는 타겟을 사하여 rf 마그네트론 스퍼터링 법으로 제작하였다. 기판온도 100, 200, 300, 400, $500^{\circ}C$ 와 열처리 온도 300, 400, $500^{\circ}C$로 변화시켜 주면서 제작하였으며 X-ray 회절 패턴, 전기적 특성, 투과도, SEM 사진 등으로 분석하였다. 그 결과 기판온도를 증가시킬수록 결정성, 전기 전도도와 투과도가 향상되었다. 그러나 공기 중에서 열처리 온도를 증가함에 따라 도리어 전도도는 감소하였다. 기판온도 $300^{\circ}C$ 이상에서 $3000\;{\AA}$ 두께를 가지고 성장된 ITO 박막은 약 $2{\times}10^{-4}{\Omega}cm$의 저항률과 85% 이상의 가시광 투과율을 가졌다.

  • PDF

인라인 스퍼터 시스템을 이용한 공정 압력의 변화에 따른 PC 기판상의 ITO 박막특성에 관한 연구 (Characteristics of ITO Thin Films Sputtered on Polycarbonate substrates at Various Pressures by In-line Sputter)

  • 안민형;조의식;권상직
    • 한국전기전자재료학회논문지
    • /
    • 제22권9호
    • /
    • pp.772-775
    • /
    • 2009
  • Indium tin oxide(ITO) thin film was deposited at room temperature on polycarbonate(PC) substrate by in-line sputter system. ITO sputtering process was carried out at a various pressure for the reduction of ion damage on PC substrate and the electrical and the optical properties of deposited ITO films were obtained and analyzed. From the experimental results, the sheet resistances of as-deposited ITO films varied with a different pressure and the optical transmittances at visible wavelength were maintained above 85%. The results are considered to be related to the pressure of oxygen atoms as a reaction gas.

반응성 스퍼트링에 의한 ITO의 형성과 유전체 소성공정중의 특성변화에 관한 연구 (The Effect of Dielectric Firing Process in PDP on the Properties of ITO Prepared by Reactive RF Sputtering)

  • 남상옥;지성원;손제봉;조정수;박정후
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 1997년도 추계학술대회 논문집
    • /
    • pp.510-514
    • /
    • 1997
  • The thin film that is electrically conductive and optically transparent is called conductive transparent thin film. ITO(Indium-Tin Oxide) which is a kind of conductive transparent thin film has been widely used in solar cell, transparent electrical heater, selective optical filter, FDP(Flat Display Panel) such as LCD(Liquid Crystal Display), PDP(Plasma Display Panel) and so on. Especially in PDP, ITO films is used as a transparent electrode in order to maintain discharge and decrease consumption power through the improvement of cell structure. In this study, we prepared ITO by reactive r.f. sputtering with indium-tin(Sn 10wt%) alloy target instead of indium-tin oxide target. The ITO films deposited at low temperature 15$0^{\circ}C$ and 8% $O_2$. Partial pressure showed about 3.6 Ω/$\square$. At the end of firing, the resistance of ITO was decreased, the optical transparence was improved above 90%.

  • PDF