DOI QR코드

DOI QR Code

Effect of a TiO2 Buffer Layer on the Properties of ITO Films Prepared by RF Magnetron Sputtering

  • Kim, Daeil (School of Materials Science and Engineering, University of Ulsan)
  • Received : 2013.03.22
  • Accepted : 2013.06.21
  • Published : 2013.10.25

Abstract

Sn-doped $In_2O_3$ (ITO) thin films were prepared by radio frequency magnetron sputtering without intentional substrate heating on bare glass and $TiO_2$-deposited glass substrates to investigate the effect of a $TiO_2$ buffer layer on the electrical and optical properties of ITO films. The thicknesses of $TiO_2$ and ITO films were kept constant at 5 and 100 nm, respectively. As-deposited ITO single layer films show an optical transmittance of 75.9%, while $ITO/TiO_2$ bi-layered films show a lower transmittance of 76.1%. However, as-deposited $ITO/TiO_2$ films show a lower resistivity ($9.87{\times}10^{-4}{\Omega}cm$) than that of ITO single layer films. In addition, the work function of the ITO film is affected by the $TiO_2$ buffer layer, with the $ITO/TiO_2$ films having a higher work-function (5.0 eV) than that of the ITO single layer films. The experimental results indicate that a 5-nm-thick $TiO_2$ buffer layer on the $ITO/TiO_2$ films results in better performance than conventional ITO single layer films.

Keywords

References

  1. Y. Kim, J. Park, D. Kim, Vacuum 82, 574 (2008) [DOI: http://dx.doi.org/10.1016/j.jallcom. 2008.11.065].
  2. Y. Kim, S. Heo, H. Lee, Y. Lee, I. Kim, M. Kang, D. Choi, B. Lee, M. Kim, D. Kim, Appl. Surf. Sci., 258, 3903 (2012) [DOI: http://dx.doi.org/10.1016/j.apsusc.2011.12.057].
  3. C. Nunes de Carvalho, G. Lavareda, E. Fortunato, H. Alves, A. Goncalves, J. Varela, R. Nascimento, A. Amaral, Mater. Sci. Eng., B 118, 66 (2005) [DOI: http://dx.doi.org/10.1016/j.mseb.2004.12.015].
  4. J. Herrero, C. Guillen, Thin Solid Films 451-452, 630 (2004) [DOI: http://dx.doi.org/10.1016/ j.tsf.2003.11.050].
  5. D. Kim, Displays 31, 155 (2010) [DOI: http://dx.doi.org/10.1016/j.displa.2010.05.002].
  6. Y. Sato, M. Taketomo, N. Ito, Y. Shigesato, Thin Solid Films 516, 5868 (2008) [DOI: http://dx.doi.org/10.1016/j.tsf.2007.10.044].
  7. Y. Kim, Y. Lee, S. Heo, H. Lee, J. Kim, S. Kim, J. Chae, J. Choi, D. Kim, Optics Comm., 284, 2303 (2011) [DOI: http://dx.doi.org/10.1016/j.optcom.2010.12.066].
  8. J. Park, J. Chae, D. Kim, J. Alloy. Comp., 478, 330 (2009) [DOI: http://dx.doi.org/10.1016/j.jallcom.2008.11.065]
  9. G. Haacke, J. Appl. Phys., 47, 4086 (1976) [DOI: http://dx.doi.org/10.1063/1.323240]
  10. V. Papaefthimiou, S. Kennou, Surf. Sci., 566-568, 497 (2004) [DOI: http://dx.doi.org/10.1016/j.susc.2004.05.102].
  11. Y. Park, V. Choong, Y. Gao, C. Tang, Appl. Phys. Lett., 68, 2699 (1996) [DOI: http://dx.doi.org/10.1063/1.116313].
  12. L. Chkoda, C. Heske, M. Sokolowski, E. Umbach, F. Steuber, J. Staudigel, M. Stossel, J. Simmerere, Synthetic Met., 111, 315 (2000) [DOI: http://dx.doi.org/10.1016/S0379-6779 (99) 00355-0].

Cited by

  1. Tuning the Phase and Microstructural Properties of TiO2 Films Through Pulsed Laser Deposition and Exploring Their Role as Buffer Layers for Conductive Films 2018, https://doi.org/10.1007/s11664-017-6043-2
  2. Effects of CW CO<sub>2</sub> Laser Annealing on Indium Tin Oxide Thin Films Characteristics vol.04, pp.04, 2014, https://doi.org/10.4236/snl.2014.44012
  3. Performance improvement of organic light emitting diode using 4,4$$^{\prime }$$′-N,N$$^{\prime }$$′-dicarbazole-biphenyl (CBP) layer over fluorine-doped tin oxide (FTO) surface with doped light emitting region vol.91, pp.5, 2018, https://doi.org/10.1007/s12043-018-1637-7
  4. Thermal, dielectric and antimicrobial properties of polystyrene-assisted/ITO:Cu nanocomposites vol.125, pp.1, 2019, https://doi.org/10.1007/s00339-018-2351-5