• Title/Summary/Keyword: INCONEL 718 alloy

Search Result 43, Processing Time 0.025 seconds

Mechanical Properties Evaluation of Gas Tungsten Arc Welding for INCONEL 718 alloy apply to Cryogenic Condition (극저온 환경에 적용되는 INCONEL 718합금의 Gas Tungsten Arc Welding 기계적 특성 평가)

  • Kim, Ki-Hong;Moon, In-Sang;Moon, Il-Yoon;Rhee, Byung-Ho
    • Korean Journal of Materials Research
    • /
    • v.19 no.12
    • /
    • pp.692-698
    • /
    • 2009
  • Inconel 718 alloy has excellent mechanical properties at room temperature, high temperature and cryogenic conditions. UTS of base metal is about 900MPa at room temperature; this is increased up to 1300MPa after heat treatment & aging-hardening. Mechanical properties of Inconel 718 Alloy were similar to those shown in the the results for tensile test; mechanical properties of Inconel 718 alloy's GTAW were similar to those of base metal's properties at room temperature. Mechanical properties at cryogenic conditions were better than those at room temperature. Heat-treated Inconel 718, non- filler metal GTAW on Inconel 718 and GTAW used filler metal on Inconel 718's UTS was 1400MPa at cryogenic condition. As a result, the excellent mechanical properties of Inconel 718 alloy under cryogenic conditions was proved through tensile tests under cryogenic conditions. In addition, weldability of Inconel 718 alloy under cryogenic conditions was superior to that of its base-metal. In this case, UTS of hybrid joint (IS-G) at -100$^{\circ}C$ was 900MPa. Consequently, UTS of Inconel 718 alloy is estimated to increase from -100$^{\circ}C$ to a specific temperature below -100$^{\circ}C$. Therefore, Inconel 718 alloy is considered a pertinent material for the production of Lox Pipe under cryogenic conditions.

Machining Characteristics Evaluation of Super Heat-resistant Alloy(Inconel 718) According to Cutting Conditions in High Speed Ball End-milling (고속 볼엔드밀링에서 가공조건에 따른 초내열합금 (Inconel 718)의 가공특성 평가)

  • Kwon, Hae-Woong;Kim, Jeong-Suk;Kang, Ik-Soo;Kim, Ki-Tae
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.19 no.1
    • /
    • pp.1-6
    • /
    • 2010
  • Inconel 718 alloy has been applied to high temperature, high load and corrosion resistant environments due to its superior properties. However, This alloy is a difficult-to-cut nickel-based superalloy and the chipping or notch wear is mainly generated on the cutting edge of the tool. In this study, the machinability of Inconel 718 is investigated to improve tool life under various cutting conditions with TiCN-based coated ball-end mills. The cutting conditions can be suggested to improve both the tool life and machined surface quality in Inconel 718 high speed machining.

Mechanical Properties Evaluation of GTAW for INCONEL 718 alloy apply to Cryogenic Condition (극저온 환경에 적용되는 INCONEL 718합금의 GTAW 기계적 특성 평가)

  • Kim, Ki-Hong;Moon, In-Sang;Rhee, Byung-Ho;Lee, Soo-Yong
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.619-622
    • /
    • 2009
  • INCONEL 718합금은 상온, 고온 및 저온환경에서 기계적 특성이 아주 우수하다. 상온에서의 모재 강도는 약 900MPa이며, 열처리 후 시효경화처리에 의해 강도가 약 1300MPa까지 증가한다. 이러한 INCONEL 718합금의 기계적 특성은 시험결과에서도 유사한 값을 나타내었고, GTAW 용접부의 상온 기계적 특성도 모재보다 우수한 강도를 나타내었다. 또한 저온에서의 기계적 특성은 모든 시험조건에서 상온보다 높은 강도를 나타내었으며, 열처리 모재시편과 용접시편은 1400MPa에 달하는 고강도를 나타내었다. 이러한 결과를 바탕으로 INCONEL 718합금의 저온 기계적 특성이 우수한 것을 증명하였고, 용접성 또한 모재의 특성과 같이 상온 및 저온 특성이 우수한 것을 알 수 있었다. INCONEL 718 합금과 STS 316L의 이종접합의 경우에도 $-100^{\circ}C$환경의 인장강도가 상온보다 300MPa 이상 증가하는 것을 알 수 있었다. 따라서, INCONEL 718합금은 $100^{\circ}C$이하부터 일정온도까지는 기계적 특성이 계속 증가 할 것으로 사료되며, 극저온 고압 상태로 공급되는 산화제 배관 제작에 적합한 소재로 판단된다.

  • PDF

Joint Properties of Inconel 718 Additive Manufactured on Ti-6Al-4V by FGM method (Ti-6Al-4V 합금 기지 위에 FGM 방식으로 적층제조 된 Inconel 718의 접합 특성 분석)

  • Park, Chan Woong;Park, Jin Woong;Jung, Ki Chae;Lee, Se-Hwan;Kim, Sung-Hoon;Kim, Jeoung Han
    • Journal of Powder Materials
    • /
    • v.28 no.5
    • /
    • pp.417-422
    • /
    • 2021
  • In the present work, Inconel 718 alloy is additively manufactured on the Ti-6Al-4V alloy, and a functionally graded material is built between Inconel 718 and Ti-6Al-4V alloys. The vanadium interlayer is applied to prevent the formation of detrimental intermetallic compounds between Ti-6Al-4V and Inconel 718 by direct joining. The additive manufacturing of Inconel 718 alloy is performed by changing the laser power and scan speed. The microstructures of the joint interface are characterized by scanning electron microscopy, energy-dispersive X-ray spectroscopy, and micro X-ray diffraction. Additive manufacturing is successfully performed by changing the energy input. The micro Vickers hardness of the additive manufactured Inconel 718 dramatically increased owing to the presence of the Cr-oxide phase, which is formed by the difference in energy input.

Localized Corrosion Behavior of Inconel 718 in a Chloride-Containing Aqueous Solution (염수 환경에서 Inconel 718의 국부 부식 거동)

  • Lee, Jun-Seob;Lee, Yejin;Kwon, Soon il;Shin, Jungho;Lee, Je-Hyun
    • Corrosion Science and Technology
    • /
    • v.20 no.6
    • /
    • pp.361-366
    • /
    • 2021
  • Localized corrosion behavior of Ni-based Inconel 718 alloy was investigated by electrochemical anodic polarization techniques in NACE TM 0177 A solution of 5 wt% NaCl + 0.5 wt% acetic acid at room temperature. After the solution heat treated at 1080 ℃ for 2.5 h, Inconel 718 was age-hardened at 780 ℃ for 8 h. The microstructure of the alloy surface was investigated by optical microscopic or scanning electron microscopic technique. The austenitic phase with the presence of metal carbides was observed on the surface of Inconel 718. Metal-carbides such as Nb-Mo and Ti-carbide with diameters of approximately 10 and 3 ㎛, respectively, were formed in Inconel 718. Anodic polarization results revealed that localized corrosion was observed at the interface between austenitic phase of a substrate and metal carbides. Difference in electrochemical property between a metal carbide and an austenitic substrate could provide an initiation site for localized corrosion of Inconel 718 surface.

A Study on Machinability Evaluation of Inconel 718 in Flat End Milling (Inconel 718의 평엔드밀링가공에서 가공성평가에 관한 연구)

  • Jeong, Jihoon;Kwon, Haewoong;Koo, Joonyoung;Kim, Pyeongho;Kim, Jeongsuk
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.21 no.6
    • /
    • pp.982-987
    • /
    • 2012
  • Inconel 718 alloy has been widely used in the aerospace, heavy industry and electronic industry. However, the machinability of this alloy is very poor, which is attributed to their inherent high strength that is maintained at elevated temperatures. The tool life is dominant problem in machining difficult-to-cut materials, so it is necessary to select the efficient cutting conditions for the improvement of tool life. In this study, the cutting force, tool wear and surface roughness are investigated in end milling machining under various cutting conditions. By this experiment, the efficient machining condition of this alloy is suggested to adopt in various industries.

Variation of microstructures and mechanical properties of hot heading process of super heat resisting alloy Inconel 718 (초내열 합금 Inconel 718 열간 헤딩 공정에서의 조직 및 기계적 특성 변화)

  • Choi, Hong-Seok;Ko, Dae-Chul;Kim, Byung-Min
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.1373-1378
    • /
    • 2007
  • Metal forming ins the process changing shapes and mechanical properties of the workpiece without initial material reduction through plastic deformation. Above all, because of hot working carried out above recrystallization temperature can be generated large deformation with one blow, it can produce with forging complicated parts or heat resisting super alloy such as Inconel 718 has the worst forgeability. In this paper, we established optimal variation of hot heading precess of the Inconel 718 used in heat resisting component and evaluated mechanical properties hot worked produce. Die material is SKD61 and initial temperature is $300^{\circ}C$. Initial billet temperature and punch velocity changed, relatively. Friction coefficient is 0.3 as lubricated condition of hot working. CAE is carried out suing DEFORM software before making the tryout part, and it is manufactured 150 ton screw press with optimal condition. It is known that forming load was decreased according to decreasing punch velocity.

  • PDF

Optimal Cutting Conditions of Surface Roughness for Inconel 718 Alloy in Turning Operation (선삭가공시의 인코넬 718합금의 표면거칠기 최적 절삭조건)

  • Park, Jong-Min;Choi, Won-Sik;Kwon, Soon-hong;Cha, Jinhoon
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.8 no.4
    • /
    • pp.48-53
    • /
    • 2009
  • Inconel 718 alloy, widely used as material of aircraft engine, has a good mechanical property in high temperature, strong anti-oxidation characteristics in oxidated current over $900^{\circ}C$, and also is not easily digested in the air containing sulfur, therefore, its usage as mechanical component is expanding rapidly. Even though Inconel alloy 718 is difficult to machine, it requires highly precise processing/machining to sustain its component quality of high accuracy. In this paper, general turning operation conditions are tested to select the best cutting process condition by measuring surface roughness through implementing experiments with orthogonal array of cutting speed, feeding speed and cutting depth as processing parameters based on the Taguchi method. Optimal turning operation conditions are extracted from the proposed experimental models.

  • PDF

Searching Optimal Cutting Condition for Surface Roughness In Turning Operation on Inconel 718 using Taguchi Method (다구찌 방법을 이용한 Inconel 718 소재의 선삭가공에서 표면거칠기 최적화)

  • Cha, Jin-Hoon;Han, Sang-Bo
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.19 no.2
    • /
    • pp.295-300
    • /
    • 2010
  • Inconel 718 alloy, widely used as material of aircraft engine, has a good mechanical property in high temperature, strong anti-oxidation characteristics in oxidated current over $900^{\circ}C$, and also is not easily digested in the air containing sulfur, therefore, its usage as mechanical component is expanding rapidly. Even though Inconel alloy 718 is difficult to machine, it requires highly precise processing/machining to sustain its component quality of high accuracy. In this paper, general turning operation conditions arc tested to select the best cutting process condition by measuring surface roughness through implementing experiments with orthogonal array of cutting speed, feeding speed and cutting depth as processing parameters based on the Taguchi method. Optimal turning operation conditions are extracted from the proposed experimental models.

Low Temperature δ-Precipitation of Inconel 718 Alloy Wire during Cold Drawing (인코넬 718합금 선재의 냉간 인발시 δ 상 저온 석출 현상 연구)

  • Park, Jae Man;Kim, Yong Hwan;Jang, Heui Un;Chung, Won Sub
    • Korean Journal of Metals and Materials
    • /
    • v.50 no.7
    • /
    • pp.511-516
    • /
    • 2012
  • Low temperature ${\delta}$-precipitation phenomenon below 2-step aging ($718^{\circ}C$, $8hr+621^{\circ}C$, 8 hr) temperature of cold drawn Inconel 718 alloy wire was investigated. The investigation was carried out on wires with a cold drawn ratio of 0, 20, 50 and 70% using OM, SEM, XRD, TEM, and DSC. In microstructures of 50 and 70% drawn wire, many precipitates were found along the grain boundaries and the twin boundaries in deformation band. From the results of the XRD and TEM analysis, the precipitates were identified as plate-like ${\delta}$-phase. From the results of the DSC analysis, it was also found that a temperature of ${\delta}$-precipitation decreases with an increase of the cold drawn ratio. We concluded that cold drawing of inconel 718 wire promotes the ${\delta}$-precipitation, and under the condition of a high drawing ratio, the ${\delta}$-phase could be precipitated at a temperature below the aging temperature ($718^{\circ}C$).