DOI QR코드

DOI QR Code

Localized Corrosion Behavior of Inconel 718 in a Chloride-Containing Aqueous Solution

염수 환경에서 Inconel 718의 국부 부식 거동

  • Lee, Jun-Seob (Materials Science and Engineering, Changwon National University) ;
  • Lee, Yejin (Materials Convergence and System Engineering, Changwon National University) ;
  • Kwon, Soon il (R&d Center, SeAH CSS corporation) ;
  • Shin, Jungho (R&d Center, SeAH CSS corporation) ;
  • Lee, Je-Hyun (Materials Science and Engineering, Changwon National University)
  • 이준섭 (국립창원대학교 신소재공학부) ;
  • 이예진 (국립창원대학교 소재융합시스템공학과) ;
  • 권순일 (세아창원특수강 기술연구소) ;
  • 신정호 (세아창원특수강 기술연구소) ;
  • 이재현 (국립창원대학교 신소재공학부)
  • Received : 2021.11.09
  • Accepted : 2021.11.20
  • Published : 2021.12.31

Abstract

Localized corrosion behavior of Ni-based Inconel 718 alloy was investigated by electrochemical anodic polarization techniques in NACE TM 0177 A solution of 5 wt% NaCl + 0.5 wt% acetic acid at room temperature. After the solution heat treated at 1080 ℃ for 2.5 h, Inconel 718 was age-hardened at 780 ℃ for 8 h. The microstructure of the alloy surface was investigated by optical microscopic or scanning electron microscopic technique. The austenitic phase with the presence of metal carbides was observed on the surface of Inconel 718. Metal-carbides such as Nb-Mo and Ti-carbide with diameters of approximately 10 and 3 ㎛, respectively, were formed in Inconel 718. Anodic polarization results revealed that localized corrosion was observed at the interface between austenitic phase of a substrate and metal carbides. Difference in electrochemical property between a metal carbide and an austenitic substrate could provide an initiation site for localized corrosion of Inconel 718 surface.

Keywords

Acknowledgement

이 논문은 2019년도 교육부의 재원으로 한국연구재단의 지원을 받아 수행된 기초연구사업임 (No. NRF-2019R1I1A3A01040990).

References

  1. S. Patel, J. J. deBarbadillo, and S. Coryell, Proc. of the 9th International Symposium on Superalloy 718 & Derivatives: Energy, Aerospace, and Industrial Applications., pp. 23-49, The Minerals, Metals & Materials Series, Cham, Switzerland (2018). Doi: https://doi.org/10.1007/978-3-319-89480-5_2
  2. H. S. Klapper, N. S. Zadorozne, and R. B. Rebak, Localized Corrosion Characteristics of Nickel Alloys: A Review, Acta Metallurgica Sinica, 19, 296 (2017). Doi: https://doi.org/10.1007/s40195-017-0553-z
  3. J. J. deBarbadillo, and S. K. Mannan, Alloy 718 for Oilfield Applications, JOM, 64, 265 (2012). Doi: https://doi.org/10.1007/s11837-012-0238-z
  4. J. H. Shin, K. M. Moon, An Electrochemical Evaluation on the Corrosion Resistance of Welding Zone due to Kinds of Repair Welding Filler Metals and Post Weld Heat Treatment, Corrosion Science and Technology, 9, 310 (2010). https://www.j-cst.org/opensource/pdfjs/web/pdf_viewer.htm?code=C00090600310
  5. S. Azadian, L.-Y. Ying, and R. Warren, Delta phase precipitation in Inconel 718, Materials Characterization, 53, 7 (2004). Doi: https://doi.org/10.1016/j.matchar.2004.07.004.
  6. L. C. M. Valle, A. I. C. Santana, M. C. Rezende, J. Dille, O. R. Mattos, and L. H. de Almeida, The influence of heat treatments on the corrosion behaviour of nickel-based alloy 718, Journal of Alloys and Compounds, 809, 151781 (2019). Doi: https://doi.org/10.1016/j.jallcom.2019.151781
  7. G. A. Rao, M. Kumar, M. Srinivas, and D. S. Sarma, Effect of standard heat treatment on the microstructure and mechanical properties of hot isostatically pressed superalloy inconel 718, Materials Science and Engineering A, 355, 114 (2003). Doi: https://doi.org/10.1016/S0921-5093(03)00079-0
  8. W. Zheng, X. Wei, Z. Song, Q. Yong, H. Feng, and Q. Xie, Effects of Carbon Content on Mechanical Properties of Inconel 718 Alloy, Journal of Iron and Steel Research International, 22, 78 (2015). Doi: https://doi.org/10.1016/S1006-706X(15)60013-9
  9. M. Gao, and R. P. Wei, Grain boundary niobium carbides in Inconel 718, Scripta Materialia, 37, 1843 (1997). Doi: https://doi.org/10.1016/S1359-6462(97)00373-4
  10. N. C. Ferreri, S. C. Vogel, and M. Knezevic, Determining volume fractions of γ, γ', γ", δ, and MC-carbide phases in Inconel 718 as a function of its processing history using an advanced neutron diffraction procedure, Materials Science and Engineering A, 781, 139228 (2020). Doi: https://doi.org/10.1016/j.msea.2020.139228
  11. M. Sundararaman, and P. Mukhopadhyay, Carbide Precipitation in Inconel 718, High Temperature Materials and Processes., 11, 351 (1993). Doi: https://doi.org/10.1515/HTMP.1993.11.1-4.351
  12. M. Goji'c, D. Marijan, and L. Kosec, Electrochemical behavior of duplex stainless steel in borate buffer solution, Corrosion, 56, 839 (2000). Doi: https://doi.org/10.5006/1.3280587
  13. G. T. Burstein, and A. J. Davenport, Journal of The Electrochemical Society, 136, 936 (1989). Doi: https://doi.org/10.1149/1.2096890
  14. J. S. Lee, T. Kawano, T. Ishii, Y. Kitagawa, T. Nakanishi, Y. Hasegawa, K. Fushimi, Initiation of localized corrosion of ferritic stainless steels by using the liquid-phase ion gun technique, Journal of The Electrochemical Society, 164, C1 (2016). Doi: https://doi.org/10.1149/2.0291702jes
  15. S. Rahman, G. Priyadarshan, K. S. Raja, C. Nesbitt, and M. Misra, Investigation of the secondary phases of Alloy 617 by Scanning Kelvin Probe Force Microscope, Materials Letters, 62, 2263 (2008). Doi: https://doi.org/10.1016/j.matlet.2007.11.077