• Title/Summary/Keyword: IMU/DVL

Search Result 21, Processing Time 0.025 seconds

Navigation System of UUV Using Multi-Sensor Fusion-Based EKF (융합된 다중 센서와 EKF 기반의 무인잠수정의 항법시스템 설계)

  • Park, Young-Sik;Choi, Won-Seok;Han, Seong-Ik;Lee, Jang-Myung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.22 no.7
    • /
    • pp.562-569
    • /
    • 2016
  • This paper proposes a navigation system with a robust localization method for an underwater unmanned vehicle. For robust localization with IMU (Inertial Measurement Unit), a DVL (Doppler Velocity Log), and depth sensors, the EKF (Extended Kalman Filter) has been utilized to fuse multiple nonlinear data. Note that the GPS (Global Positioning System), which can obtain the absolute coordinates of the vehicle, cannot be used in the water. Additionally, the DVL has been used for measuring the relative velocity of the underwater vehicle. The DVL sensor measures the velocity of an object by using Doppler effects, which cause sound frequency changes from the relative velocity between a sound source and an observer. When the vehicle is moving, the motion trajectory to a target position can be recorded by the sensors attached to the vehicle. The performance of the proposed navigation system has been verified through real experiments in which an underwater unmanned vehicle reached a target position by using an IMU as a primary sensor and a DVL as the secondary sensor.

Development of Underwater Vehicle Position Tracking Algorithm by using a Gyro-Doppler Sensor and Ultra Short Base Line (자이로 도플러 센서와 USBL을 통한 수중체 위치추적 알고리즘개발)

  • Kim, Deok-Jin;Park, Dong-Won;Park, Yeon-Sic
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.10 no.11
    • /
    • pp.1973-1977
    • /
    • 2006
  • This paper reports the absolute position tracking algorithm of underwater vehicles such as ROV, AUV in global region by fusing sensor informations of IMU, DVL, USBL, DGPS etc. This algorithm is to be used in the position tracking of the 6,000m class deep-sea unmanned underwater vehicle, HEMIRE for scientific exploration.

DVL-RPM based Velocity Filter Design for a Performance Improvement Underwater Integrated Navigation System (수중운동체 복합항법 성능 향상을 위한 DVL/RPM 기반의 속도 필터 설계)

  • Yoo, Tae Suk;Yoon, Seon Il
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.19 no.9
    • /
    • pp.774-781
    • /
    • 2013
  • The purpose of this paper is to design a DVL-RPM based VKF (Velocity Kalman Filter) design for a performance improvement underwater integrated navigation system. The proposed approach relies on a VKF, augmented by a altitude from Echo-sounder based switching architecture to yield robust performance, even when DVL (Doppler Velocity Log) exceeds the measurement range and the measured value is unable to be valid. The proposed approach relies on two parts: 1) Indirect feedback navigation Kalman filter design, 2) VKF design. To evaluate proposed method, we compare the results of the VKF aided navigation system with simulation result from a PINS (Pure Inertial Navigation System) and conventional INS-DVL method. Simulations illustrate the effectiveness of the underwater navigation system assisted by the additional DVL-RPM based VKF in underwater environment.

A Hybrid Navigation System for Underwater Unmanned Vehicles, Using a Range Sonar (초음파 거리계를 이용한 무인잠수정의 수중 복합 항법시스템)

  • LEE PAN-MOOK;JEON BONG-HWAN;KIM SEA-MOON;LEE CHONG-MOO;LIM YONG-KON;YANG SEUNG-IL
    • Journal of Ocean Engineering and Technology
    • /
    • v.18 no.4 s.59
    • /
    • pp.33-39
    • /
    • 2004
  • This paper presents a hybrid underwater navigation system for unmanned underwater vehicles, using an additional range sonar, where the navigation system is based on inertial and Doppler velocity sensors. Conventional underwater navigation systems are generally based on an inertial measurement unit (IMU) and a Doppler velocity log (DVL), accompanying a magnetic compass and a depth sensor. Although the conventional navigation systems update the bias errors of inertial sensors and the scale effects of DVL, the estimated position slowly drifts as time passes. This paper proposes a measurement model that uses the range sonar to improve the performance of the IMU-DVL navigation system, for extended operation of underwater vehicles. The proposed navigation model includes the bias errors of IMU, the scale effects of VL, and the bias error of the range sonar. An extended Kalman filter was adopted to propagate the error covariance, to update the measurement errors, and to correct the state equation, when the external measurements are available. To illustrate the effectiveness of the hybrid navigation system, simulations were conducted with the 6-d.o.f. equations of motion of an AUV in lawn-mowing survey mode.

Rotating Arm Test for Assessment of an Underwater Hybrid Navigation System for a Semi-Autonomous Underwater Vehicle (반자율무인잠수정의 수중 복합항법 시스템 성능평가를 위한 회전팔 시험)

  • 이종무;이판묵;김시문;홍석원;서재원;성우제
    • Journal of Ocean Engineering and Technology
    • /
    • v.17 no.4
    • /
    • pp.73-80
    • /
    • 2003
  • This paper presents considerations on the results of the rotating arm test, which was carried out for assessment of an hybrid navigation system for a semi-autonomous underwater vehicle. The navigation system consists of an inertial measurement unit(IMU), an ultra-short baseline(USBL) acoustic navigation sensor and a doppler velocity log(DVL) accompanying a magnetic compass. A navigational systemmodel is derived to include the scale effect and bias errors of the DVL, of which the state equation composed of the navigation states and sensor parameters are 25 in the order. The extended Kalman filter was used to propagate the error covariance, The rotating arm tests were carried out in the Ocean Engineering Basin of KRISO, to generate circular motion. The hybrid underwater navigation system shows good tracking performance against the circular planar motion. Additionally this paper checked the effects of the sampling ratio of the navigation system and the possibility of the dead reckoning with the DVL and the magnetic compass to estimate the position of the vehicle.

Underwater Hybrid Navigation Algorithm Based on an Inertial Sensor and a Doppler Velocity Log Using an Indirect Feedback Kalman Filter (간접 되먹임 필터를 이용한 관성센서 및 초음파 속도센서 기반의 수중 복합항법 알고리듬)

  • 이종무;이판묵;성우제
    • Journal of Ocean Engineering and Technology
    • /
    • v.17 no.6
    • /
    • pp.83-90
    • /
    • 2003
  • This paper presents an underwater hybrid navigation system for a semi-autonomous underwater vehicle (SAUV). The navigation system consists of an inertial measurement unit (IMU), and a Doppler velocity log (DVL), accompanied by a magnetic compass. The errors of inertial measurement units increase with time, due to the bias errors of gyros and accelerometers. A navigational system model is derived, to include the scale effect and bias errors of the DVL, of which the state equation composed of the navigation states and sensor parameters is 20. The conventional extended Kalman filter was used to propagate the error covariance, update the measurement errors, and correct the state equation when the measurements are available. Simulation was performed with the 6-d.o,f equations of motion of SAUV, using a lawn-mowing survey mode. The hybrid underwater navigation system shows good tracking performance, by updating the error covariance and correcting the system's states with the measurement errors from a DVL, a magnetic compass, and a depth sensor. The error of the estimated position still slowly drifts in the horizontal plane, about 3.5m for 500 seconds, which could be eliminated with the help of additional USBL information.

Pseudo Long Base Line (LBL) Hybrid Navigation Algorithm Based on Inertial Measurement Unit with Two Range Transducers (두 개의 초음파 거리계를 이용한 관성센서 기반의 의사 장기선 (Pseudo-LBL) 복합항법 알고리듬)

  • LEE PAN-MOOK;JUN BONG-HUAN;HONG SEOK-WON;LIM YONG-KON;YANG SEUNG-IL
    • Journal of Ocean Engineering and Technology
    • /
    • v.19 no.5 s.66
    • /
    • pp.71-77
    • /
    • 2005
  • This paper presents an integrated underwater navigational algorithm for unmanned underwater vehicles, using additional two-range transducers. This paper proposes a measurement model, using two range measurements, to improve the performance of an IMU-DVL (inertial measurement unit - Doppler velocity log) navigation system for long-time operation of underwater vehicles, excluding DVL measurement. Extended Kalman filter was adopted to propagate the error covariance, to update the measurement errors, and to correct the state equation when the external measurements are available. Simulation was conducted with the 6-d.o.f nonlinear numerical model of an AUV in lawn-mowing survey mode, at current flaw, where the velocity information is unavailable. Simulations illustrate the effectiveness of the integrated navigation system, assisted by the additional range measurements without DVL sensing.

Analysis of Integrated Navigation Performance for Sensor Selection of Unmanned Underwater Vehicle (UUV) (무인잠수정 센서 선정을 위한 복합항법 성능 분석)

  • Yoo, Tae-Suk;Kim, Moon Hwan
    • Journal of Ocean Engineering and Technology
    • /
    • v.28 no.6
    • /
    • pp.566-573
    • /
    • 2014
  • This paper presents the results of an integrated navigation performance analysis for selecting the sensor of an unmanned underwater vehicle (UUV) using Monte Carlo numerical simulation. An inertial measurement unit (IMU) and Doppler velocity log (DVL) are considered to build the integrated navigation system. The position error and price of the sensor are selected as performance indices to evaluate the volunteer integrated navigation systems. Monte-Carlo simulation is introduced to analyze the circular error probability (CEP) and its variance. Simulation results provide the proper sensor combination for integrated navigation in relation to the performance and price.

Development and Performance Verification of Real-time Hybrid Navigation System for Autonomous Underwater Vehicles

  • Kim, Hyun Ki;Jung, Woo Chae;Kim, Jeong Won;Nam, Chang Woo
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.5 no.2
    • /
    • pp.97-107
    • /
    • 2016
  • Military Autonomous Underwater Vehicle (AUV) is utilized to search a mine under the sea. This paper presents design and performance verification of real-time hybrid navigation system for AUV. The navigation system uses Doppler Velocity Log (DVL) integration method to correct INS error in underwater. When the AUV is floated on the water, the accumulated error of navigation algorithm is corrected using position/velocity of GPS. The navigation algorithm is verified using 6 Degree Of Freedom (DOF) simulation, Program In the Loop Simulation (PILS). Finally, the experiments are performed in real sea environment to prove the reliability of real-time hybrid navigation algorithm.

Development of Integrated Navigation Algorithm for Underwater Vehicle using Velocity Filter (속도필터 적용 수중운동체 복합항법 알고리즘 개발)

  • Yoo, Tae-Suk;Chung, Gyoo-Pil;Yoon, Seon-Il
    • Journal of Ocean Engineering and Technology
    • /
    • v.27 no.2
    • /
    • pp.93-99
    • /
    • 2013
  • This paper describes a robust algorithm for an integrated underwater navigation system based on VKF (velocity Kalman filter). The proposed approach relies on a VKF, augmented by the altitude from an echo-sounder-based switching architecture to yield robust performance, even when DVL (Doppler velocity log) exceeds the measurement range and the measured value cannot be valid. The proposed approach relies on three parts: 1) PINS (pure inertial navigation system), 2) VKF design, and 3) VKF-aided integrated navigation filter design. To evaluate the proposed method, we compare the results of the VKF-aided navigation system with the simulation result from a PINS and conventional INS-DVL method.