• 제목/요약/키워드: IMPACT

검색결과 35,817건 처리시간 0.051초

단계적 타격 스트로크 가변 메커니즘이 적용된 지능형 유압브레이커의 기술 제안 (Technique Proposal of Auto-Sensing Hydraulic Breaker with Stepwise Impact Stroke Variable Mechanism)

  • 이대희;노대경;이동원;장주섭
    • 드라이브 ㆍ 컨트롤
    • /
    • 제15권2호
    • /
    • pp.9-21
    • /
    • 2018
  • The aim of this study was to develop and test a model of an auto-sensing hydraulic breaker that can automatically change its 4-step impact mode according to the rock strength using SimulationX. The auto-sensing hydraulic breaker with a 4-step variable impact mode has the advantage of obtaining optimal impact energy and impact frequency under various rock conditions compared to an auto-sensing hydraulic breaker with a 2-step variable impact mode, which has already been developed overseas. Several steps were necessary to conduct this study. First, the operation principle of the auto-sensing hydraulic breaker with the 2-step variable impact mode was analyzed. Based on the findings, an analysis model of the auto-sensing hydraulic breaker with the 4-step variable impact mode was developed (and compared with the 2-step variable impact mode) Finally, an analysis of the results established that the stepwise variable of the impact mode was implemented according to the rock strength and the difference of each impact mode was confirmed. This study is expected to contribute to the development of auto-sensing hydraulic breakers that are superior to those developed by advanced companies in foreign countries.

A one-dimensional model for impact forces resulting from high mass, low velocity debris

  • Paczkowski, K.;Riggs, H.R.;Naito, C.J.;Lehmann, A.
    • Structural Engineering and Mechanics
    • /
    • 제42권6호
    • /
    • pp.831-847
    • /
    • 2012
  • Impact from water-borne debris during tsunami and flood events pose a potential threat to structures. Debris impact forces specified by current codes and standards are based on rigid body dynamics, leading to forces that are dependent on total debris mass. However, shipping containers and other debris are unlikely to be rigid compared to the walls, columns and other structures that they impact. The application of a simple one-dimensional model to obtain impact force magnitude and duration, based on acoustic wave propagation in a flexible projectile, is explored. The focus herein is on in-air impact. Based on small-scale experiments, the applicability of the model to predict actual impact forces is investigated. The tests show that the force and duration are reasonably well represented by the simple model, but they also show how actual impact differs from the ideal model. A more detailed three-dimensional finite element model is also developed to understand more clearly the physical phenomena involved in the experimental tests. The tests and the FE results reveal important characteristics of actual impact, knowledge of which can be used to guide larger scale experiments and detailed modeling. The one-dimensional model is extended to consider water-driven debris as well. When fluid is used to propel the 1-D model, an estimate of the 'added mass' effect is possible. In this extended model the debris impact force depends on the wave propagation in the two media, and the conditions under which the fluid increases the impact force are discussed.

필라멘트 와인딩 복합재 압력용기의 충격저항성에 미치는 표면 고무 보호재료의 영향 (The Effect of Surface Protective Material on the Impact Resistance in Filament Wound Composite Pressure Vessel)

  • 강기원;김용수;이미애;최린
    • 한국안전학회지
    • /
    • 제20권4호
    • /
    • pp.14-19
    • /
    • 2005
  • One area in which composites have been used rather extensively is for fabricating pressure vessel. These structures can be readily manufactured by filament winding, which is, as far as composite fabrication techniques are concerned, a relatively inexpensive method for producing composite structures. Unfortunately, the higher strength material and fabrication costs are not the only disadvantages of fiber-reinforced polymer composites when they are compared to metals. Additionally, these materials tend to exhibit brittle behavior. This is of particular concern when they are subjected to a low-velocity impact during routine handling a significant amount of structural damage can be introduced into the composites. The goals of this paper are to understand the impact damage behavior and identify the effect of surface coating materials on impact resistance in filament wound composite pressure vessels. For these, a series of low velocity impact tests was performed on specimens cutting from the full scale pressure vessel by the instrumented impact testing machine. The specimens are classified into two types with and without surface protective material. The visualization for impact damage is made by metallurgical microscope. Based on the impact force history and damage, the resistance parameters were employed and its validity in identifying the damage resistance of pressure vessel was reviewed. As the results, the impact resistance of the filament wound composites and its dependency on the protective material were evaluated quantitatively.

생물다양성 평가기법의 국내외 연구동향 분석 및 환경영향평가 적용가능성에 대한 연구 (A Study on the National and International Research Trend of Biodiversity Assessment method and Its Application of Environmental Impact Assessment)

  • 구미현;이동근
    • 환경영향평가
    • /
    • 제21권1호
    • /
    • pp.119-132
    • /
    • 2012
  • Biodiversity is a key element of ecosystem of which function provides essential product and service in human life. In the course since development projects often causes damages to biodiversity, environmental impact assessment technique must be capable of accurately assessing potential impact from flora and fauna and to entire ecosystem. Korea needs improvement of its assessment technique that is compatible with Korean environmental regulatory standard that is generally stricter than that of most countries. This study attempts to explore both domestic and overseas biodiversity assessment techniques and analyze each stage of environmental impact assessment. The data is collected from numbers of literatures selected by navigating both domestic and overseas literature database with certain keywords. Among the 44 selected papers, overseas publications outnumber those of domestics, and there are more researches on assessment methodology of biodiversity than assessment tool and model. In terms of environmental impact assessment, the number of papers on environmental impact forecast exceeds the numbers of papers on current state of environment and the impact minimizing solution. Therefore, contents and trends of those researches in the different stages of environmental impact assessment discussed in this paper not only suggest potential impact on biodiversity and minimization solutions in detail, but is also a valuable resource particularly for biodiversity relevant environmental assessment technique improvement in Korea. Proposing of a new direction of improvement in biodiversity assessment techniques makes this study significant, and further research for preservation of biodiversity should follow up to provide an improvement scheme for biodiversity assessment techniques in the future.

전자 미트 응용을 위한 유연 압전 충격 센서의 제조와 특성 평가 (Fabrication and Evaluation of a Flexible Piezoelectric Impact Force Sensor for Electronic Mitt Application)

  • 나용현;이민선;조정호;백종후;이정우;박영준;정영훈
    • 센서학회지
    • /
    • 제28권2호
    • /
    • pp.106-112
    • /
    • 2019
  • Flexible impact force sensors composed of piezoelectric PZT/PDMS composite sandwiched between Al/PET films were fabricated and their voltage signal characteristics were evaluated under varying impact forces for electronic mitt applications. The piezoelectric impact force sensor on an ethylene-vinyl acetate (EVA) substrate exhibited an output voltage difference of no greater than 40 mV a periodical impact test in with the impact load was increased by as much as 240 N by a restoration time of 5 s in a five-time experiment, implying good sensing ability. Moreover, the impact force sensor embedded four electronic mitts showed a reliable sensitivity of less than 1 mV/N and good repeatability under 100 N-impact force during a cycle test executed 10,000 times. This indicated that the fabricated flexible piezoelectric impact sensor could be used in electronic mitt applications. However, the relatively low elastic limit of substrate material such as EVA or poly-urethane slightly deteriorated the sensitivity of the impact sensor embedded electronic mitt at over 200 N-impact forces.

Improvement Measures for Projects Subject to Environmental Impact Assessment in Urban Areas

  • CHO, Dong-Myung;LEE, Ju-Yeon;KWON, Woo-Taeg
    • 웰빙융합연구
    • /
    • 제5권2호
    • /
    • pp.43-50
    • /
    • 2022
  • Purpose: The small-scale environmental impact assessment conducted during the development project stage has focused on the preservation of the natural environment centered on non-urban areas, due to the nature of urbanization, health problems for citizens of high-density urban areas have a limitation in that they are relatively neglected. In the case of strategic environmental impact assessment and environmental impact assessment in urban areas, there is no basis for evaluation in urban areas because there are exceptions to be excluded from the target projects or there are no target project regulations for buildings. Therefore, in this research, we examined the problems with the target project such as the current environmental impact assessment, and tried to establish a system improvement plan that can solve them. Research design, data and methodology: After reviewing the current environmental impact assessment-related laws (including enforcement ordinances) and national land planning laws (including enforcement ordinances), exceptions such as environmental impact assessment in urban areas were identified and problems were identified. Based on this, an amendment to the Enforcement Decree was proposed to provide institutional support for the expansion of target projects such as environmental impact assessment in urban areas. Results and Conclusions: Through this research, it is expected that the projects subject to environmental impact assessment on development projects in urban areas directly related to the health of the people will be expanded, and the net function of the environmental impact assessment system will be maximized.

Evaluation of Impact Sound Insulation Properties of Light-Framed Floor with Radiant Floor Heating System

  • Nam, Jin-Woo;Park, Joo-Saeng;Lee, Jun-Jae
    • Journal of the Korean Wood Science and Technology
    • /
    • 제30권3호
    • /
    • pp.75-84
    • /
    • 2002
  • In order to find out impact insulation properties, various types of current radiant floor heating systems and light-framed floors that are used in light-framed residential buildings were evaluated for two types of impact sources at the same time. Sound Pressure Level (SPL) was different from each impact sources for those spectrum patterns and peaks. In case of light-framed floor framework, the excitation position and the assumed effective vibrating area have effects on sound pressure level but it is not considerable, and Normalized SPL was reduced for each frequency by increasing the bending rigidity of joist. The mortar layer in the radiant heating system had relatively high density and high impedance, therefore, it distributed much of the impact power when it was excited, and reduced the Normalized SPL considerably. Nevertheless, Increasing a thickness of mortar layer had little influence on SPL. Ceiling components reduced the sound pressure level about 5~25 dB for each frequency. Namely, it had excellent sound insulation properties in a range from 200 to 4,000 Hz frequency for both heavy and lightweight impact sources. Also, there was a somewhat regular sound insulation pattern for each center frequency. The resilient channel reduced the SPL about 2~11 dB, irrelevant to impact source. Consequently, current radiant floor heating systems which were established in light-framed residential buildings have quite good impact sound insulation properties for both impact sources.

타격력 응답신호를 이용한 암석의 비파괴 압축강도 산정방법에 관한 연구 (Study on Non-destructive Assessment of Compressive Strength of Rock Using Impact Force Response Signal)

  • 손무락;성진현
    • 한국지반환경공학회 논문집
    • /
    • 제23권10호
    • /
    • pp.13-19
    • /
    • 2022
  • 본 연구는 암석의 압축강도를 비파괴적으로 산정하기 위하여 암석시편 초기타격 및 반발에 의한 연속적인 반복타격 시 발생하는 타격력에 대한 응답신호를 모두 측정하고 이를 누적한 전체 타격력 신호에너지를 이용하고 그 결과를 제시하는 것에 관한 것이다. 본 연구에서는 이를 위해서 타격 및 측정장치를 고안 및 셋업하였고 이를 이용하여 암석시편을 회전 자유낙하에 의해 초기 타격토록하고 반발작용에 의한 반복타격이 이루어질 수 있도록 하였다. 본 연구에서는 서로 다른 세 종류의 암석시편에 대하여 타격력실험을 실시하고 발생신호를 측정하였다. 각 시편별 초기 및 반발타격으로부터 발생된 신호로부터 산정된 전체 타격력 신호에너지와 각 시편별 측정한 직접압축강도와 상호 비교하였다. 비교결과, 타격력 응답신호로 부터 산정된 전체 타격력 신호에너지는 시편의 직접압축강도와 직접적인 관계가 있다는 것을 확인하였으며, 이를 통해 암석의 압축강도는 타격 시 발생하는 타격력 응답신호로부터 산정된 전체 타격력 신호에너지를 이용하여 비파괴적으로 산정할 수 있음을 알 수 있었다.

Experimental investigation of impact behaviour of shear deficient RC beam to column connection

  • Murat, Aras;Tolga, Yilmaz;Ozlem, Caliskan;Ozgur, Anil;R. Tugrul, Erdem;Turgut, Kaya
    • Structural Engineering and Mechanics
    • /
    • 제84권5호
    • /
    • pp.619-632
    • /
    • 2022
  • Reinforced concrete (RC) structures may be subjected to sudden dynamic impact loads such as explosions occurring for different reasons, the collision of masses driven by rockfall, flood, landslide, and avalanche effect structural members, the crash of vehicles to the highway and seaway structures. Many analytical, numerical, and experimental studies focused on the behavior of RC structural elements such as columns, beams, and slabs under sudden dynamic impact loads. However, there is no comprehensive study on the behavior of the RC column-beam connections under the effect of sudden dynamic impact loads. For this purpose, an experimental study was performed to investigate the behavior of RC column-beam connections under the effect of low-velocity impact loads. Sixteen RC beam-column connections with a scale of 1/3 were manufactured and tested under impact load using the drop-weight test setup. The concrete compressive strength, shear reinforcement spacing in the beam, and input impact energy applied to test specimens were taken as experimental variables. The time histories of impact load acting on test specimens, accelerations, and displacements measured from the test specimens were recorded in experiments. Besides, shear and bending crack widths were measured. The effect of experimental variables on the impact behavior of RC beam-column connections has been determined and interpreted in detail. Besides, a finite element model has been established for verification and comparison of the experimental results by using ABAQUS software. It has been demonstrated that concrete strength, shear reinforcement ratio, and impact energy significantly affect the impact behavior of RC column-beam connections.

도시개발부담금 산정에 관한 이론적 고찰 (Theoretical Reflections on the Calculation of Development Impact Fees)

  • 류연택
    • 한국경제지리학회지
    • /
    • 제26권1호
    • /
    • pp.55-71
    • /
    • 2023
  • 본 논문은 도시성장, 신 도시개발, 개발업자, 도시계획가, 주택, 부동산 시장, 커뮤니티 계획, 커뮤니티 자금 조달, 지방 정부, 토지 이용 계획, 공공시설, 개발 비용에 초점을 맞추어 개발부담금 산정에 대해 이론적으로 고찰하였다. 개발부담금을 누가 부담해야 하는지에 대한 많은 질문이 실증적 분석을 기반으로 한 답변을 요구한다. 이러한 질문에는 토지 소유자가 부담하는 정도, 다양한 수준의 개발부담금이 커뮤니티의 사회경제적 혼합에 미치는 영향, 지역 내 재정 혜택의 분배 등이 포함된다. 더 광범위한 질문은 개발부담금의 차별적 부과가 도시 및 지역 형태에 어떻게 영향을 미치는가 그리고 개발부담금이 지역 성장을 보다 효율적으로 또는 덜 효율적으로 만드는가에 관한 것이다. 누가 개발부담금을 궁극적으로 지불하는가? 시장이 개발부담금에 어떻게 반응하는지에 대한 실증적 평가는 매우 부족하지만, 전반적으로 거주자(주민과 사용자)가 개발부담금의 대부분을 지불하는 것으로 알려져 있다.