DOI QR코드

DOI QR Code

전자 미트 응용을 위한 유연 압전 충격 센서의 제조와 특성 평가

Fabrication and Evaluation of a Flexible Piezoelectric Impact Force Sensor for Electronic Mitt Application

  • 나용현 (한국세라믹기술원 광전자부품소재센터) ;
  • 이민선 (한국세라믹기술원 광전자부품소재센터) ;
  • 조정호 (한국세라믹기술원 광전자부품소재센터) ;
  • 백종후 (한국세라믹기술원 광전자부품소재센터) ;
  • 이정우 (부산대학교재료공학과) ;
  • 박영준 ((주)아이엔아이테크, 기술연구소) ;
  • 정영훈 (한국세라믹기술원 광전자부품소재센터)
  • Na, Yong-hyeon (Optic&electronic Components Materials Center, Korea Institute of Ceramic Engineering and Technology) ;
  • Lee, Min-seon (Optic&electronic Components Materials Center, Korea Institute of Ceramic Engineering and Technology) ;
  • Cho, Jeong-ho (Optic&electronic Components Materials Center, Korea Institute of Ceramic Engineering and Technology) ;
  • Paik, Jong-hoo (Optic&electronic Components Materials Center, Korea Institute of Ceramic Engineering and Technology) ;
  • Lee, Jung Woo (Department of Materials Science and Engineering, Pusan National University) ;
  • Park, Youngjun (INI Tech R&D center) ;
  • Jeong, Young Hun (Optic&electronic Components Materials Center, Korea Institute of Ceramic Engineering and Technology)
  • 투고 : 2019.03.09
  • 심사 : 2019.03.25
  • 발행 : 2019.03.31

초록

Flexible impact force sensors composed of piezoelectric PZT/PDMS composite sandwiched between Al/PET films were fabricated and their voltage signal characteristics were evaluated under varying impact forces for electronic mitt applications. The piezoelectric impact force sensor on an ethylene-vinyl acetate (EVA) substrate exhibited an output voltage difference of no greater than 40 mV a periodical impact test in with the impact load was increased by as much as 240 N by a restoration time of 5 s in a five-time experiment, implying good sensing ability. Moreover, the impact force sensor embedded four electronic mitts showed a reliable sensitivity of less than 1 mV/N and good repeatability under 100 N-impact force during a cycle test executed 10,000 times. This indicated that the fabricated flexible piezoelectric impact sensor could be used in electronic mitt applications. However, the relatively low elastic limit of substrate material such as EVA or poly-urethane slightly deteriorated the sensitivity of the impact sensor embedded electronic mitt at over 200 N-impact forces.

키워드

HSSHBT_2019_v28n2_106_f0001.png 이미지

Fig. 1. Commercial PVDF piezoelectric impact force sensor for electronic body armour.

HSSHBT_2019_v28n2_106_f0002.png 이미지

Fig. 2. Particle size analysis spectra of the piezoelectric ceramic powders (S55, Sunny Tech. Co., Taiwan) after ball-milling for 24 h.

HSSHBT_2019_v28n2_106_f0003.png 이미지

Fig. 3. Flow chart of fabrication process for flexible piezoelectric impact force sensor composed of 50 μm-thick piezoelectric composite film sandwiched Al/PET film.

HSSHBT_2019_v28n2_106_f0004.png 이미지

Fig. 5. Testing apparatus using a rotating hammer fitted with a hemispherical impactor

HSSHBT_2019_v28n2_106_f0007.png 이미지

Fig. 10. Repeatability measurements of the impact force sensor for the electronic mitt set to periodic 100 N impact force.

HSSHBT_2019_v28n2_106_f0008.png 이미지

Fig. 4. (a) Schematic image of the impact force tester for measurement of output signal from the electronic mitt and (b) real images of the impact force tester system.

HSSHBT_2019_v28n2_106_f0009.png 이미지

Fig. 6. (a) Schematic of cross-sectional structure of the flexible piezoelectric impact force sensor, (b) the printed piezoelectric composite film on Al/PET film (left) and the final product of flexible piezoelectric impact force sensor.

HSSHBT_2019_v28n2_106_f0010.png 이미지

Fig. 7. Output voltage obtained from the flexible piezoelectric impact force sensor at various impact force.

HSSHBT_2019_v28n2_106_f0011.png 이미지

Fig. 8. (a) Internal structure and (b) photograph of the fabricated electronic mitt.

HSSHBT_2019_v28n2_106_f0012.png 이미지

Fig. 9. Output sensing signal of the fabricated electronic mitt depending on applied impact force.

Table 1. Piezoelectric and dielectric properties of the piezoelectric ceramic (S55, Sunny Tech. Co., Taiwan) sintered at 1,100℃.

HSSHBT_2019_v28n2_106_t0001.png 이미지

Table 2. Summary of voltage signals from piezoelectric impact force sensor on EVA (ethylene-vinyl acetate) plate after impact force loading.

HSSHBT_2019_v28n2_106_t0002.png 이미지

Table 3. Summary of impact sensing signal characteristics of the piezoelectric sensor embedded electronic mitts.

HSSHBT_2019_v28n2_106_t0003.png 이미지

참고문헌

  1. J. Wei, "How wearables intersect with the cloud and the internet of things", IEEE Consum. Electr. M., Vol. 3, No. 3, pp. 53-56, 2014. https://doi.org/10.1109/MCE.2014.2317895
  2. C. Perera, C. H. Liu, and S. Jayawardena, "The emerging internet of things marketplace from an industrial perspective: a survey", IEEE Trans. Emerg. Top. Comput., Vol. 3, No. 4, pp. 585-598, 2015. https://doi.org/10.1109/TETC.2015.2390034
  3. A. Kos, V. Milutinovic, and A. Umek, "Challenges in wireless communication for connected sensors and wearable devices used in sport biofeedback applications", Future Gener. Comput. Syst., Vol. 92, pp. 582-592, 2019. https://doi.org/10.1016/j.future.2018.03.032
  4. A. Umek, Y. Zhang, S. Tomazic, and A. Kos, "Suitability of strain gage sensors for integration into smart sport equipment: A golf club example", Sensors, Vol. 17, No. 4, pp. 916-933, 2017 https://doi.org/10.3390/s17040916
  5. Z. H. Zhang, J. W. Kan, X. C. Yu, S. Y. Wang, J. J. Ma, and Z. X. Cao, "Sensitivity enhancement of piezoelectric force sensors by using multiple piezoelectric effects", AIP Adv., Vol. 6, No. 7, pp. 075320(1)-075320(10), 2016. https://doi.org/10.1063/1.4960212
  6. http://www.directindustry.com/prod/measurement-specialties/product-9250-410196.html (retrieved on Mar. 6, 2019).
  7. C. Chang, V.H. Tran, J. Wang, Y.-K. Fuh, and L. Lin, "Direct-writ piezoelectric polymeric nanogenerator with high energy conversion efficiency", Nano Lett., Vol. 10, No. 2, pp. 726-731, 2010. https://doi.org/10.1021/nl9040719
  8. A. Eddiai, M. Meddad, R. Farhan, M. Mazroui, M. Rguiti, and D. Cuyomar, "Using PVDF piezoelectric polymers to maximize power harvested by mechanical structure", Superlattices Microstruct., Vol. 127, pp. 20-26, 2019. https://doi.org/10.1016/j.spmi.2018.03.044
  9. Y. M. Yousry, K. Yao, S. Chen, W. H. Liew, and S. Ramakrishna, "Mechanisms for enhancing polarization orientation and piezoelectric parameters of PVDF nanofibers", Adv. Electron. Mater., Vol. 4, No. 6, pp. 1700562(1)-1700562(8), 2018. https://doi.org/10.1002/aelm.201700562
  10. M. Platte, "PVDF ultrasonic transducers", Ferroelectrics, Vol. 75, No. 1, pp. 327-337, 1987. https://doi.org/10.1080/00150198708008983
  11. H. Ohigashi, "Electromechanical properties of polarized polyvinylidene fluoride films as studied by the piezoelectric resonance method", J. Appl. Phys., Vol. 47, No. 3, pp. 949-955, 1976. https://doi.org/10.1063/1.322685
  12. J. Han, D. Li, C. Zhao, X. Wang, J. Li, and X. Wu, "Highly sensitive impact sensor based on PVDF-TrFE/Nano-ZnO composite thin film", Sensors, Vol. 19, No. 4, pp. 830-841, 2019. https://doi.org/10.3390/s19040830
  13. D. B. Deutz, N. T. Macarenhas, J. B. J. Schelen, D. M. D. Leeuw, S. V. D. Zwaag, and P. Groen, "Flexible piezoelectric touch sensor by alignment of lead-free alkaline niobate microcubes in PDMS", Adv. Funct. Mater., Vol. 27, No. 24, pp. 1700728(1)-1700728(7), 2017. https://doi.org/10.1002/adfm.201700728
  14. M. Xie, K. Hisano, M. Zhu, T. Toyoshi M. Pan, S. Okada, O. Tsutsumi, S. Kawamura, and C. Bowen, "Flexible multifunctional sensors for wearable and robotic applications", Adv. Mater. Tech., pp. 1800626(1)-1800626(29), 2019. (online publish) https://doi.org/10.1002/admt.201800626
  15. H. Kim, B. R. Wilburn, E. Castro, C. A. G. Rosales, L. A. Chavez, T.-L. B. Tseng, and Y. Lin, "Multifunctional sensing using 3D printed CNTs/$BaTiO_3$/PVDF nanocomposites", J. Compos. Mater., 2018. (online publish)
  16. M. H. Abdellah, C. A. Scholes, B. d. Freeman, L. Liu, and S. E. Kentish, "Transport of terpenses through composite PDMS/PAN solvent resistant nanofiltration membranes", Sep. Purif. Technol., Vol. 207, pp. 470-476, 2018. https://doi.org/10.1016/j.seppur.2018.06.074
  17. J. Peng, H. Zhang, Q. Zheng, C. M. Clemons, R. C. Sabo, S. Gong, Z. Ma, and L.-S. Turng, "A composite genenrator film impregnated with cellulose nanocrystals for enhanced triboelectric performance", Nanoscale, Vol. 9, No. 4, pp. 1428-1433, 2017. https://doi.org/10.1039/C6NR07602E
  18. S. Khan, S. Tinku, L. Lorenzelli, and R. S. Dahiya, "Flexible tactile sensors using screen-printed P(VDF-TrFE) and MWCNT/PDMS composites", IEEE Sens. J., Vol. 15, No. 6, pp. 3146-3155, 2015. https://doi.org/10.1109/JSEN.2014.2368989
  19. M. Acer, M. Salerno, K. Agbeviade, and J. Paik, "Development and characterization of silicone embedded distributed piezoelectric sensors for contact detection", Smart Mater. Struct., Vol. 24, No. 7, pp. 075030(1)-075030(15), 2015. https://doi.org/10.1088/0964-1726/24/7/075030