DOI QR코드

DOI QR Code

Experimental investigation of impact behaviour of shear deficient RC beam to column connection

  • Murat, Aras (Civil Engineering Department, Bilecik Seyh Edebali University) ;
  • Tolga, Yilmaz (Civil Engineering Department, Konya Technical University) ;
  • Ozlem, Caliskan (Civil Engineering Department, Bilecik Seyh Edebali University) ;
  • Ozgur, Anil (Civil Engineering Department, Gazi University) ;
  • R. Tugrul, Erdem (Civil Engineering Department, Manisa Celal Bayar University) ;
  • Turgut, Kaya (Civil Engineering Department, Batman University)
  • Received : 2020.11.28
  • Accepted : 2022.11.09
  • Published : 2022.12.10

Abstract

Reinforced concrete (RC) structures may be subjected to sudden dynamic impact loads such as explosions occurring for different reasons, the collision of masses driven by rockfall, flood, landslide, and avalanche effect structural members, the crash of vehicles to the highway and seaway structures. Many analytical, numerical, and experimental studies focused on the behavior of RC structural elements such as columns, beams, and slabs under sudden dynamic impact loads. However, there is no comprehensive study on the behavior of the RC column-beam connections under the effect of sudden dynamic impact loads. For this purpose, an experimental study was performed to investigate the behavior of RC column-beam connections under the effect of low-velocity impact loads. Sixteen RC beam-column connections with a scale of 1/3 were manufactured and tested under impact load using the drop-weight test setup. The concrete compressive strength, shear reinforcement spacing in the beam, and input impact energy applied to test specimens were taken as experimental variables. The time histories of impact load acting on test specimens, accelerations, and displacements measured from the test specimens were recorded in experiments. Besides, shear and bending crack widths were measured. The effect of experimental variables on the impact behavior of RC beam-column connections has been determined and interpreted in detail. Besides, a finite element model has been established for verification and comparison of the experimental results by using ABAQUS software. It has been demonstrated that concrete strength, shear reinforcement ratio, and impact energy significantly affect the impact behavior of RC column-beam connections.

Keywords

References

  1. ABAQUS User's Manual (2015), Version 6.12, SIMULIA, Dassault Systemes Simulia Corp..
  2. Al-Rifaie, A., Guan, Z.W., Jones, S.W. and Wang, Q. (2017), "Lateral impact response of end-plate beam-column connections", Eng. Struct., 151, 221-234. https://doi.org/10.1016/j.engstruct.2017.08.026.
  3. Anil, O., Durucan, C., Erdem, R.T. and Yorgancilar, M.A. (2016), "Experimental and numerical investigation of reinforced concrete beams with variable material properties under impact loading", Constr. Build. Mater., 125, 94-104. https://doi.org/10.1016/j.conbuildmat.2016.08.028.
  4. Anil, O., Erdem, R.T. and Tokgoz, M.N. (2018a), "Investigation of lateral impact behavior of RC columns", Comput. Concrete, 22(1), 123-132. https://doi.org/10.12989/cac.2018.22.1.123.
  5. Anil, O., Kantar, E. and Yilmaz, M.C. (2015), "Low velocity impact behavior of RC slab have different support type", Constr. Build. Mater., 93, 1078-1088. https://doi.org/10.1016/j.conbuildmat.2015.05.039.
  6. Anil, O ., Yilmaz, M. C. and Barmaki, W. (2018b), "Experimental and numerical study of RC columns under lateral low-velocity impact load", Proceedings of the Institution of Civil Engineers-Structures and Buildings, 1-19.
  7. Aoude, H., Dagenais, F.P., Burrell, R.P. and Saatcioglu, M. (2015), "Behavior of ultra-high performance fiber reinforced concrete columns under blast loading", Int. J. Impact Eng., 80, 185-202. https://doi.org/10.1016/j.ijimpeng.2015.02.006.
  8. Bao, X. and Li, B. (2010), "Residual strength of blast damaged reinforced concrete columns", Int. J. Impact Eng., 37(3), 295-308. https://doi.org/10.1016/j.ijimpeng.2009.04.003.
  9. Birtel, V. and Mark, P. (2006), "Parameterised finite element modelling of RC beam shear failure", Proceedings of the 19th Annual International ABAQUS Users' Conference, Boston.
  10. Chen, K., Wang D.M., Yang, B., Lin, X. and Elchalakani, M. (2022), "Parametric study on composite beam with various connections under mid-span impact scenarios", Eng. Struct., 268, 114776. https://doi.org/10.1016/j.engstruct.2022.114776.
  11. Demartino, C., Wu, J.G. and Xiao, Y. (2017), "Response of shear-deficient reinforced circular RC columns under lateral impact loading", Int. J. Impact Eng., 109, 196-213. https://doi.org/10.1016/j.ijimpeng.2017.06.011.
  12. Do, T.V., Pham, T.M. and Hao, H. (2018a), "Dynamic responses and failure modes of bridge columns under vehicle collision", Eng. Struct., 156, 243-259. https://doi.org/10.1016/j.engstruct.2017.11.053.
  13. Do, T.V., Pham, T.M. and Hao, H. (2018b), "Numerical investigation of the behavior of precast concrete segmental columns subjected to vehicle collision", Eng. Struct., 156, 375-393. https://doi.org/10.1016/j.engstruct.2017.11.033.
  14. Fujikake, K. and Aemlaor, P. (2013), "Damage of reinforced concrete columns under demolition blasting", Eng. Struct., 55, 116-125. https://doi.org/10.1016/j.engstruct.2011.08.038.
  15. Grimsmo, E.L., Clausen, A.H., Aalberg, A. and Langseth, M. (2016), "A numerical study of beam-to-column joints subjected to impact", Eng. Struct., 120, 103-115. https://doi.org/10.1016/j.engstruct.2016.04.031.
  16. Kaewkulchai, G. and Williamson, E. (2006), "Modeling the impact of failed members for progressive collapse analysis of frame structures", J. Perform. Constr. Facil., 20(4), 375-383. https://doi.org/10.1061/(ASCE)0887-3828(2006)20:4(375).
  17. Kantar, E. and Anil, O. (2012), "Low velocity impact behavior of concrete beam strengthened with CFRP strip", Steel Compos. Struct., 12(3), 207-230. https://doi.org/10.12989/scs.2012.12.3.207.
  18. Kantar, E., Erdem, R.T. and Anil, O. (2011), "Nonlinear finite element analysis of impact behavior of concrete beam", Math. Comput. Appl., 16(1), 183-193. https://doi.org/10.3390/mca16010183.
  19. Kiakojouri, F., Biagi, V.D., Chiaia, B. and Sheidaii, M.R. (2020), "Progressive collapse of framed building structures: Current knowledge and future prospects", Eng. Struct., 206, 110061. https://doi.org/10.1016/j.engstruct.2019.110061.
  20. Kyei, C. and Braimah, A. (2017), "Effects of transverse reinforcement spacing on the response of reinforced concrete columns subjected to blast loading", Eng. Struct., 142, 148-164. https://doi.org/10.1016/j.engstruct.2017.03.044.
  21. Li, C., Hao, H. and Bi, K. (2017b), "Numerical study on the seismic performance of precast segmental concrete columns under cyclic loading", Eng. Struct., 148, 373-386. https://doi.org/10.1016/j.engstruct.2017.06.062.
  22. Li, H., Chen, W., Huang, Z., Hao, H., Ngo, T.T. and Pham, T.M. (2022), "Influence of various impact scenarios on the dynamic performance of concrete beam-column joints", Int. J. Impact Eng., 167, 104284. https://doi.org/10.1016/j.ijimpeng.2022.104284.
  23. Li, J., Wu, C., Hao, H. and Liu, Z. (2017a), "Post-blast capacity of ultra-high performance concrete columns", Eng. Struct., 134, 289-302. https://doi.org/10.1016/j.engstruct.2016.12.057.
  24. Liao, W., Li, M, Zhang, W. and Tian, Z. (2016), "Experimental studies and numerical simulation of behavior of RC beams retrofitted with HSSWM-HPM under impact loading", Eng. Struct., 149, 131-146. http://doi.org/10.1016/j.engstruct.2016.07.040.
  25. Liu, B., Fan, W., Guo, W., Chen, B. and Liu, R. (2017), "Experimental investigation and improved FE modeling of axially-loaded circular RC columns under lateral impact loading", Eng. Struct., 152, 619-642. https://doi.org/10.1016/j.engstruct.2017.09.009.
  26. Mander, J.B., Priestley, M.J.N. and Park, R. (1988), "Theoretical stress-strain model for confined concrete", J. Struct. Eng., 114(8), 1804-1826. https://doi.org/10.1061/(ASCE)0733-9445(1988)114:8(1804)
  27. Shakir, A.S., Guan, Z.W. and Jones, S.W. (2016), "Lateral impact response of the concrete filled steel tube columns with and without CFRP strengthening", Eng. Struct., 116, 148-162. https://doi.org/10.1016/j.engstruct.2016.02.047.
  28. Siba, F. (2014), "Near-field explosion effects on reinforced concrete columns: An experimental investigation", M.Sc. Thesis, Department of Civil and Environmental Engineering, Carleton University
  29. Wang, H., Yang, B., Chen, K. and Elchalakani, M. (2020), "Parametric analysis and simplified approach for steel-framed subassemblies with reverse channel connection under falling-debris impact", Eng. Struct., 225, 111263. https://doi.org/10.1016/j.engstruct.2020.111263.
  30. Wang, W.D., Li, H. and Wang, J.X. (2017), "Progressive collapse analysis of concrete-filled steel tubular column to steel beam connections using multi-scale model", Struct., 9, 123-133. https://doi.org/10.1016/j.istruc.2016.10.004.
  31. Wang, X., Zhang, Y., Su, Y. and Feng, Y. (2011), "Experimental investigation on the effect of reinforcement ratio to capacity of RC column to resist lateral impact loading", Syst. Eng. Procedia, 1, 35-41. https://doi.org/10.1016/j.sepro.2011.08.007.
  32. Wu, K.C., Li, B. and Tsai, K.C. (2011), "Residual axial compression capacity of localized blast-damaged RC columns", Int. J. Impact Eng., 38(1), 29-40. https://doi.org/10.1016/j.ijimpeng.2010.09.002.
  33. Xiong, B., Demartino, C. and Xiao, Y. (2019), "High-strain rate compressive behavior of CFRP confined concrete: Large diameter SHPB tests", Constr. Build. Mater., 201, 484-501. https://doi.org/10.1016/j.conbuildmat.2018.12.144.
  34. Xu, J., Wu, C., Xiang, H., Su, Y., Li, Z.X., Fang, Q., ... & Li, J. (2016), "Behaviour of ultra high performance fibre reinforced concrete columns subjected to blast loading", Eng. Struct., 118, 97-107. https://doi.org/10.1016/j.engstruct.2016.03.048.
  35. Yang, B., Chen, K., Wang D.M. and Elchalakani, M. (2022), "Experimental study on composite beam with various connections under midspan impact scenarios", J. Struct. Eng., 148(10), 04022158. https://doi.org/10.1061/(ASCE)ST.1943-541X.0003470
  36. Yang, B., Wang, H., Yang, Y., Kang S.B., Zhou, X.H. and Wang, L. (2018), "Numerical study of rigid steel beam-column joints under impact loading", J. Constr. Steel Res., 147, 62-73. https://doi.org/10.1016/j.jcsr.2018.04.004.
  37. Yilmaz, M.C., Anil, O., Alyavuz, B. and Kantar, E. (2014), "Load displacement behavior of concrete beam under monotonic static and low velocity impact load", Int. J. Civil Eng., 12(4), 488-503.
  38. Yilmaz, T. and Anil, O. (2015), "Low velocity impact behavior of shear deficient RC beam strengthened with CFRP strips", Steel Compos. Struct., 19(2), 417-439. https://doi.org/10.12989/scs.2015.19.2.417.
  39. Yilmaz, T., Kirac, N. and Anil, O ., Erdem, RT, Sezer, C. (2018), "Low velocity impact behaviour of rc two way slab strengthening with CFRP strips", Constr. Build. Mater., 186, 1046-1063. https://doi.org/10.1016/j.conbuildmat.2018.08.027.
  40. Yilmaz, T., Kirac, N., Anil, O., Erdem, R.T. and Kacaran, G. (2020), "Experimental investigation of impact behaviour of RC slab with different reinforcement ratios", KSCE J. Civil Eng., 24(1), 241-254. https://doi.org/10.1007/s12205-020-1168-x.
  41. Zhang, X., Hao, H. and Li, C. (2016), "Experimental investigation of the response of precast segmental columns subjected to impact loading", Int. J. Impact Eng., 95, 105-124. https://doi.org/10.1016/j.ijimpeng.2016.05.005.
  42. Zhou, S.C., Demartino, C., Xu, J.J. and Xiao, Y. (2021), "Effectiveness of CFRP seismic-retrofit of circular RC bridge piers under vehicular lateral impact loading", Eng. Struct., 243, 112602. https://doi.org/10.1016/j.engstruct.2021.112602.