DOI QR코드

DOI QR Code

Study on Non-destructive Assessment of Compressive Strength of Rock Using Impact Force Response Signal

타격력 응답신호를 이용한 암석의 비파괴 압축강도 산정방법에 관한 연구

  • Son, Moorak (Department of Civil Engineering, Daegu University) ;
  • Seong, Jinhyun (Department of Civil Engineering, Daegu University)
  • Received : 2022.07.13
  • Accepted : 2022.09.14
  • Published : 2022.10.01

Abstract

This paper is to provide the results of usability of the impact force response signal induced from initial and successive rebound impacting a rock specimen for assessing the compressive strength of rock non-destructively. For this study, a device was devised for impacting a rock specimen and a system for measuring the impact force was set up. The impact was carried out by an initial rotating free falling impact and following repetitive impacts from the rebound action which eventually disappears. Three different kinds of rock specimen were tested and an impact force response signal was measured for each test specimen. The total impact force signal energy which is assessed from integrating the impact force response signal induced from initial and rebound impacts was compared with the directly measured compressive strength for each rock specimen. The comparison showed that the total impact force signal energy has a direct relationship with the directly measured compressive strength and the results clearly indicated that the compressive strength of rock can be assessed non-destructively using total impact force signal energy.

본 연구는 암석의 압축강도를 비파괴적으로 산정하기 위하여 암석시편 초기타격 및 반발에 의한 연속적인 반복타격 시 발생하는 타격력에 대한 응답신호를 모두 측정하고 이를 누적한 전체 타격력 신호에너지를 이용하고 그 결과를 제시하는 것에 관한 것이다. 본 연구에서는 이를 위해서 타격 및 측정장치를 고안 및 셋업하였고 이를 이용하여 암석시편을 회전 자유낙하에 의해 초기 타격토록하고 반발작용에 의한 반복타격이 이루어질 수 있도록 하였다. 본 연구에서는 서로 다른 세 종류의 암석시편에 대하여 타격력실험을 실시하고 발생신호를 측정하였다. 각 시편별 초기 및 반발타격으로부터 발생된 신호로부터 산정된 전체 타격력 신호에너지와 각 시편별 측정한 직접압축강도와 상호 비교하였다. 비교결과, 타격력 응답신호로 부터 산정된 전체 타격력 신호에너지는 시편의 직접압축강도와 직접적인 관계가 있다는 것을 확인하였으며, 이를 통해 암석의 압축강도는 타격 시 발생하는 타격력 응답신호로부터 산정된 전체 타격력 신호에너지를 이용하여 비파괴적으로 산정할 수 있음을 알 수 있었다.

Keywords

References

  1. ASTM D7012-14 (2014), American Society for Testing and Materials, Standard Test Methods for Compressive Strength and Elastic Moduli of Intact Rock Core Specimens under Varying States of Stress and Temperatures, Vol. 04.09. Pennsylvania.
  2. Goktan, R.M. and Gunes, N. (2005), A comparative study of Schmidt hammer testing procedures with reference to rock cutting machine performance prediction, Int. J. Rock Mech. Min. Sci., 42, pp. 466~477. https://doi.org/10.1016/j.ijrmms.2004.12.002
  3. FHWA (1997), Guide to nondestructive testing of concrete, Federal Highway Administration, FHWA-SA-97-105 written by G.I. Crawford, pp. 1~58.
  4. IAEA (2002), Guidebook on non-destructive testing of concrete structures, International Atomic Energy Agency, Training course series No. 17, Vienna, Austria, pp. 1~231.
  5. ISRM (International Society for Rock Mechanics) (2007), The complete ISRM suggested methods for rock characterization, testing and monitoring: 1974-2006 (Eds. Ulusay&Hudson).
  6. John, M. (1972), "The Influence of Loading Rate on Mechanical Properties and Fracture Processes of Rock", Republic of South African CSIR, Meg. 1115, p. 28.
  7. Kahraman, S. (2001), Evaluation of simple methods for assessing the uniaxial compressive strength of rock, Int. J. Rock Mech. Min. Sci., Vol. 38(7), pp. 981~994. https://doi.org/10.1016/S1365-1609(01)00039-9
  8. Lama, R. D. and Vutukuri, V. S. (1978), Handbook on Rock Properties of Rocks, Trans Tech Publications.
  9. Malhotra, V. M. (1991), "Surface hardness methods", Handbook on Nondestructive Testing of Concrete, Ch. 1, CRC Press, Inc., Boca Raton, FL, pp. 1~17.
  10. Mellor, M. (1971), "Strength and Deformability of Rocks at Low Temperatures", CRREL RR 294.
  11. Minaeian, B. and Ahangari, K. (2013), Estimation of uniaxial compressive strength based on P-wave and Schmidt hammer rebound using statistical method, Arabian Jour. Sci., Vol. 6(6), pp. 1925~1931.
  12. Naik, T. R. and Malhotra, V. M. (1991), The ultra-sonic pulse velocity method, Handbook on Nondestructive Testing of Concrete, CRC Press, Inc., Boca Raton, FL, pp. 169~202.
  13. Patil, N. R. and Patil, J. R. (2008), Non-destructive testing (NDT) advantages and limitations, SRES College of Engineering, Kopargaon, Maharashtra - 423 603, pp. 71~78.
  14. Rashed, M. A., Msnsour, A. S., Fars, H. and Afify, W. (2014), "Factors affecting the ultimate compressive strength of the Quaraternary calcarenites, north western desert, Egypt", Int. J. of Environ., Chem., Ecolo., Geol., and Geophy. Eng., Vol. 8(2), pp. 117~129.
  15. Sachpazis, C. I. (1990), Correlating Schmidt hardness with compressive strength and Young's modulus of carbonate rocks, Bull. Int. Assoc. Eng. Geol., 42, pp. 75~83. https://doi.org/10.1007/BF02592622
  16. Schmidt, E. (1951), A non-destructive concrete tester, Concrete, Vol. 59(8), pp. 34~35.
  17. Shalabi, F. I., Cording, E. J. and Al-Hattamleh, O. H. (2007), Estimation of rock engineering properties using hardness tests, Eng. Geol., Vol. 90(3~4), pp. 138~147. https://doi.org/10.1016/j.enggeo.2006.12.006
  18. Son, M. and Kim, M. (2017), "Estimation of the compressive strength of intact rock using non-destructive testing method based on total sound signal energy", Geotechnical Testing Journal, Vol. 40(4), pp. 643~657.
  19. Son, M. and Kim, M. (2017), "Development and validation of an NDT based on total sound signal energy", ASTM Journal of testing and evaluation, Vol. 47(1), pp. 87~103.
  20. Sygala, A., Bukowska, M. and Janoszek, T. (2013), "High temperature versus geomechanical parameters of selected rocks-The present state of research", J. of Sutainable Mining, Vol. 12(4), pp. 45~51. https://doi.org/10.7424/jsm130407
  21. Tronvoll, J. and Fjaer, E., "Experimental Study of Sand Production from Perforation Cavities", Investigation of Cavity Failures for Sand Production Prediction, University of Trondheim, Trondheim, Norway, (August 1993), pp. 92~106.
  22. Tuncay, E. and Hasancebi, N. (2009), "The effect of length to diameter ratio of test specimens on the uniaxial compressive strength of rock", Bulletin of Engineering Geology and the Environment, Vol. 68(4), pp. 491~497. https://doi.org/10.1007/s10064-009-0227-9
  23. Vasarhelyi, B. (2003), "Some observations regarding the strength and deformability of sandstones in case of dry and saturated conditions", Bull. Eng. Geol. Env., Vol. 62, pp. 245~249. https://doi.org/10.1007/s10064-002-0186-x
  24. Yasar, E. and Erdogan, Y. (2004), Estimation of rock physicomechanical properties using hardness methods, Eng. Geol., 71, pp. 281~288. https://doi.org/10.1016/S0013-7952(03)00141-8