• Title/Summary/Keyword: IL-6$I{\kappa}B$

Search Result 333, Processing Time 0.023 seconds

Anti-inflammatory effects of a novel compound, MPQP, through the inhibition of IRAK1 signaling pathways in LPS-stimulated RAW 264.7 macrophages

  • Kim, Ba Reum;Cho, Young-Chang;Cho, Sayeon
    • BMB Reports
    • /
    • v.51 no.6
    • /
    • pp.308-313
    • /
    • 2018
  • Small-molecule inhibitors are widely used to treat a variety of inflammatory diseases. In this study, we found a novel anti-inflammatory compound, 1-[(2R,4S)-2-methyl-4-(phenylamino)-1,2,3,4-tetrahydroquinolin-1-yl]prop-2-en-1-one (MPQP). It showed strong anti-inflammatory effects in lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophages. These effects were exerted through the inhibition of the production of NO and pro-inflammatory cytokines, such as interleukin (IL)-6, $IL-1{\beta}$, and tumor necrosis $factor-{\alpha}$ ($TNF-{\alpha}$). Furthermore, MPQP decreased the expression levels of inducible NO synthase (iNOS) and cyclooxygenase 2 (COX-2). Additionally, it mediated the inhibition of the phosphorylation of p38, c-Jun N-terminal kinase (JNK), the inhibitor of ${\kappa}B{\alpha}$ ($I{\kappa}B{\alpha}$), and their upstream kinases, $I{\kappa}B$ kinase (IKK) ${\alpha}/{\beta}$, mitogen-activated protein kinase kinase (MKK) 3/6, and MKK4. Furthermore, the expression of IL-1 receptor-associated kinase 1 (IRAK1) that regulates $NF-{\kappa}B$, p38, and the JNK signaling pathways, was also increased by MPQP. These results indicate that MPQP regulates the IRAK1-mediated inflammatory signaling pathways by targeting IRAK1 or its upstream factors.

Synergistic Anti-inflammatory Effect of Rosmarinic Acid and Luteolin in Lipopolysaccharide-Stimulated RAW264.7 Macrophage Cells (Rosmarinic acid와 luteolin의 항염증에 대한 상승효과)

  • Cho, Byoung Ok;Yin, Hong Hua;Fang, Chong Zhou;Ha, Hye Ok;Kim, Sang Jun;Jeong, Seung Il;Jang, Seon Il
    • Korean Journal of Food Science and Technology
    • /
    • v.47 no.1
    • /
    • pp.119-125
    • /
    • 2015
  • The aim of this study was to investigate the synergistic anti-inflammatory effect of rosmarinic acid (RA) and luteolin from perilla (Perilla frutescens L.) leaves in lipopolysaccharide (LPS)-stimulated RAW264.7 macrophages. A combination of RA and luteolin more strongly inhibited the production of nitric oxide (NO), inducible NOS (iNOS), prostaglandin $E_2$ ($PGE_2$), and COX-2 than higher concentrations of RA or luteolin alone in LPS-stimulated RAW264.7 macrophages. The combined RA and luteolin synergistically inhibited the production of pro-inflammatory cytokines, such as tumor necrosis factor-${\alpha}$ (TNF-${\alpha}$), interleukin-6 (IL-6), and interleukin-$1{\beta}$ (IL-$1{\beta}$), in LPS-stimulated RAW264.7 macrophages. Furthermore, combined RA and luteolin more strongly suppressed NF-${\kappa}B$ activation than RA or luteolin alone, by inhibiting the degradation of inhibitor of NF-${\kappa}B(I{\kappa}B)$-${\alpha}$ and nuclear translocation of the p65 subunit of NF-${\kappa}B$ in LPS-stimulated RAW264.7 macrophages. Collectively, these results suggest that RA and luteolin in combination exhibit synergistic effects in suppression of LPS-induced inflammation in RAW264.7 macrophages.

Anti-inflammatory Effect of Oyster Shell Extract in LPS-stimulated Raw 264.7 Cells

  • Lee, Se-Young;Kim, Hak-Ju;Han, Ji-Sook
    • Preventive Nutrition and Food Science
    • /
    • v.18 no.1
    • /
    • pp.23-29
    • /
    • 2013
  • This study was designed to investigate the anti-inflammatory effect of oyster shell extract on the production of pro-inflammatory factors [NO, reactive oxygen species (ROS), nuclear factor-kappa B (NF-${\kappa}B$), inducible nitric oxide synthase (iNOS) and cycloxygenase-2 (COX-2)] and pro-inflammatory cytokines [Interleukin-$1{\beta}$ (IL-$1{\beta}$), Interleukin-6 (IL-6) and TNF-${\alpha}$] in the lipopolysaccharide (LPS)-stimulated Raw 264.7 cells. Cell viability, as measured by the MTT assay, showed that oyster shell extract had no significant cytotoxicity in Raw 264.7 cells. The treatment with oyster shell extract decreased the generation of intracellular reactive oxygen species dose dependently and increased antioxidant enzyme activities, such as SOD, catalase, GSH-px in LPS-stimulated macrophage cells. Oyster shell extract significantly suppressed the production of NO and also decreased the expressions of iNOS, COX-2 and NF-${\kappa}B$. Additionally, oyster shell extract significantly inhibited the production of IL-$1{\beta}$, IL-6, and TNF-${\alpha}$ in LPS-stimulated Raw 264.7 cells. Thus, these results showed that the oyster shell extract had an anti-inflammatory effect on LPS-stimulated Raw 264.7 cells.

Anti-Inflammatory Effect of Fermented Artemisia princeps Pamp in Mice

  • Joh, Eun-Ha;Trinh, Hien-Trung;Han, Myung-Joo;Kim, Dong-Hyun
    • Biomolecules & Therapeutics
    • /
    • v.18 no.3
    • /
    • pp.308-315
    • /
    • 2010
  • Essential oil-excluded Artemisia princeps Pamp var Ssajuarissuk (AP) was fermented with Lactobacillus brevis K-1, which was isolated from cabbage Kimchi, and the anti-inflammatory effects of AP and fermented AP (FAP) on lipopolysaccharide (LPS)-induced inflammatory response in peritoneal macrophages were investigated. AP and FAP inhibited LPS-induced TNF-$\alpha$, IL-$1{\beta}$, COX-2, iNOS and COX-2 expression, as well as NF-${\kappa}B$ activation. AP and FAP also reduced ear thickness, inflammatory cytokine (TNF-$\alpha$, IL-$1{\beta}$ and IL-6) expression and NF-${\kappa}B$ activation with 12-O-tetradecanoylphorbol-13-acetate (TPA) induced dermatitis in mice. Furthermore, AP and FAP also reduced exudate volume, cell number, protein amount, inflammatory cytokines (TNF-$\alpha$, IL-$1{\beta}$ and IL-6) expression and NF-${\kappa}B$ activation in carrageenan-induced air pouch inflammation in mice. The inhibitory effects of FAP were more potent than those of non-fermented AP. Based on these findings, we propose that FAP can improve inflammatory diseases, such as dermatitis, by inhibiting the NF-${\kappa}B$ pathway.

The immune enhancement effect of Cheonggukjang Water Extract (CWE) via activation of NF-κB pathways in murine macrophage RAW 264.7 cells (RAW 264.7 대식세포에서 청국장 열수 추출물(Cheonggukjang Water Extract, CWE)의 면역 증강 효과)

  • Sehyeon Jang;San Kim;Se Jeong Kim;Sung Ran Yoon;Bo Ram So;Jung A Ryu;Jeong Min Park;Sung Keun Jung
    • Journal of Applied Biological Chemistry
    • /
    • v.66
    • /
    • pp.282-288
    • /
    • 2023
  • Due to the COVID-19 pandemic, the immuneenhancing health functional food market that protects our bodies from pathogens such as viruses continues to grow. In this study, we aimed to prove the Cheonggukjang, a high-nutrient food with high protein, fat, and dietary fiber content, as an immuneenhancing nutraceutical. Cheonggukjang water extract (CWE) increased the production of nitric oxide, reactive oxygen species, and cytokines such interleukin (IL)-6, IL-1β, and tumor necrosis factor-α without affecting viability in RAW 264.7 cells. Furthermore, CWE significantly upregulated the expression of inducible nitric oxide synthase and cyclooxygenase-2 in RAW 264.7 cells. CWE enhanced the phosphorylation of I kappa B kinase α/β and I kappa B (IκB)α, as well as the degradation of IκBα. CWE also induced increased phosphorylation of nuclear factor-kappa B p65 and facilitated the redistribution of p65 from the cytoplasm to the nucleus in RAW 264.7 cells. These findings suggest that CWE has potential as a health functional food material that can enhance the innate immune response.

Anti-inflammatory Effects of Ethanolic Extracts from Codium fragile on LPS-Stimulated RAW 264.7 Macrophages via Nuclear Factor kappaB Inactivation

  • Yoon, Ho-Dong;Jeong, Eun-Ji;Choi, Ji-Woong;Lee, Min-Sup;Park, Myoung-Ae;Yoon, Na-Young;Kim, Yeon-Kye;Cho, Deuk-Moon;Kim, Jae-Il;Kim, Hyeung-Rak
    • Fisheries and Aquatic Sciences
    • /
    • v.14 no.4
    • /
    • pp.267-274
    • /
    • 2011
  • Bacterial lipopolysaccharide (LPS) induces expression of pro-inflammatory cytokines and enzymes producing nitric oxide (NO) and prostaglandins (PGs) in immune cells. This process is mediated by the activation of nuclear factor kappaB (NF-${\kappa}B$). In this study, we investigated the anti-inflammatory characteristics of Codium fragile ethanolic extract (CFE) mediated by the regulation of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) using LPS-stimulated murine macrophage RAW 264.7 cells. CFE significantly inhibited LPS-induced NO and $PGE_2$ production in a dose-dependent manner and suppressed the expression of iNOS and COX-2 proteins in LPS-stimulated RAW 264.7 cells with no cytotoxicity. Pro-inflammatory cytokines, such as interleukin (IL)-$1{\beta}$, IL-6, and tumor necrosis factor-${\alpha}$, were significantly reduced by treatment of CFE in LPS-stimulated RAW 264.7 cells. CFE inhibited the promoter activity of (NF)-${\kappa}B$ in LPS-stimulated macrophages. Treatment with CFE suppressed translocation of the NF-${\kappa}B$ p65 subunit by preventing proteolytic degradation of inhibitor of ${\kappa}B-{\alpha}$. These results indicate that the CFE-mediated inhibition of NO and $PGE_2$ production in LPS-stimulated RAW 264.7 cells is mediated through the NF-${\kappa}B$-dependent transcriptional downregulation of iNOS and COX-2, suggesting the potential of CFE as a nutraceutical with anti-inflammatory activity.

Inhibitory effect of Fagopyrum esculentum on degranulation and production of cytokine in RBL-2H3 cells (교맥의 RBL-2H3 비만세포 탈과립과 cytokine 생산 억제 효과)

  • Kang, Kyung-Hwa;Lee, Seung-Yeon
    • The Journal of Korean Medicine Ophthalmology and Otolaryngology and Dermatology
    • /
    • v.25 no.3
    • /
    • pp.1-12
    • /
    • 2012
  • Objectives : Fagopyrum esculentum(FE) has been used for removal of inflammation of internal organs and treatment of sore and ulcer by heat toxin in Korean herbal medicines. In this study, To investigated the protective effect of FE on allergic response, we determined whether FE inhibits allergic response. Methods : The effect of FE was analyzed by ELISA, RT-PCR and Western blot in RBL-2H3 cells. We investigated cell viability, ${\beta}$-hexosaminidase, as a marker of degranulation, cytokne, and intracellular ROS and MAPK and NF-${\kappa}B$ signaling. Results : We found that FE suppressed ${\beta}$-hexosaminidase release, the production of IL-4 and TNF-${\alpha}$ and intracellular ROS level in RBL-2H3 by the anti-DNP IgE plus DNP-HSA stimulation. FE also significantly inhibited cytokine mRNA expressions, such as IL-$1{\beta}$, IL-2, IL-3, IL-4, IL-5, IL-6, IL-13, TNF-${\alpha}$ and GM-CSF in RBL-2H3. In addition, PF suppressed the phospholyation of ERK1/2, JNK1/2, p38 and $I{\kappa}B{\alpha}$ and NF-${\kappa}B$ signal transduction pathway. Conclusions : Our results indicate that FE protects against allergic response and exerts an anti-inflammatory effect through the inhibition of degranulation and production of cytokines and ROS via the suppression MAPK and NF-${\kappa}B$ of signal transduction. Abbrevations : FE, Fagopyrum esculentum; RBL-2H3, rat basophilic leukemia cell line; ROS, reactive oxygen species; MAPK, Mitogen-activated protein kinase; $NF{\kappa}B$, nuclear factor ${\kappa}B$; $TNF{\alpha}$, Tumor necrosis factor alpha; GM-CSF, Granulocyte macrophage colony-stimulating factor; ERK, extracellular-signal-regulated kinase; JNK, c-Jun NH2-terminal kinase; p38, p38 MAP kinase; $I{\kappa}B{\alpha}$, inhibitory-kappa B alpha.

Inhibitory Effects of β-Glycyrrhetinic Acid on Tumor Necrosis Factor-α Production in RAW 264.7 Cells

  • Park, Kyoung-Sik
    • Journal of Applied Biological Chemistry
    • /
    • v.53 no.3
    • /
    • pp.147-153
    • /
    • 2010
  • $\beta$-glycyrrhetinic acid (GA), the active principle of licorice (Glycyrrhiza glabra L.) has been reported to exhibit anti-inflammatory properties in different animal models. In this study, the effects of GA on the production of inflammatory mediators including tumor necrosis factor (TNF)-$\alpha$, interleukin (IL)-6, nitric oxide (NO), and prostaglandin E (pGE)-2 were examined in RAW 264.7 cells in vitro. Furthermore, to elucidate a possible mechanism for the inhibitory effect of GA on the production of TNF-$\alpha$, it was investigated whether the treatment of GA affects the I-${\kappa}B{\alpha}$ degradation and subsequent nuclear translocation of NF-${\kappa}B$. Various inflammatory responses were induced in the culture system by treating with a lipopolysaccharide (LPS). GA showed anti-inflammatory activities in dose-dependant manner with $IC_{50}$ of $5.4{\mu}M$ by inhibiting the production of TNF-$\alpha$ in RAW 264.7 cells. In addition, the treatment of GA blocked both I-${\kappa}B{\alpha}$ degradation and the nuclear translocation of NF-${\kappa}B$ from cytosol to nucleus. However, it did not affect the production of IL-6, NO, and PGE-2, implying the direct blocking of the production of TNF-$\alpha$ resulting from both the I-${\kappa}B{\alpha}$ degradation and the nuclear translocation of NF-${\kappa}B$. This finding might provide the underlying mechanism to explain the reported anti-inflammatory activities of GA in animal models.

Anti-Inflammatory Effect of Aqueous Extract of Scolopendrae Corpus in RAW 264.7 Cells (마우스 대식세포주인 RAW 264.7 세포에서 오공(蜈蚣)의 항염증 효과)

  • Jo, Il-Joo;Choi, Mee-Ok;Park, Min-Cheol;Song, Ho-Joon;Park, Sung-Joo
    • The Korea Journal of Herbology
    • /
    • v.26 no.3
    • /
    • pp.23-29
    • /
    • 2011
  • Objective : The purpose of this study was to investigate the anti-inflammatory effects of aqueous extract from Scolopendrae Corpus (SC) on lipopolysaccharide (LPS)-induced inflammatory response. Methods : To evaluate the anti-inflammatory effects of SC, we examined the inflammatory mediators such as nitric oxide (NO) and pro-inflammatory cytokines (TNF-a, inteleukin (IL)-$1{\beta}$ and IL-6) on RAW 264.7 cells. We also examined molecular mechanisms such as mitogen-activated protein kinases (MAPKs) and inhibitory kappa B a ($I{\kappa}$-Ba) using western blot. Furthermore, we also investigated the effect of SC on LPS-induced endotoxin shock. Results : Extract from SC itself had not any cytotoxic effect in RAW 264.7 cells. Aqueous extract from SC inhibited LPS-induced NO production and iNOS expression. SC pre-treatment also inhibited IL-$1{\beta}$, IL-6 production in RAW 264.7 cells. To investigate inhibitory effects of SC on inflammatory mediators, activation of MAPKs was examined. SC inhibited the phosphorylation of p38 kinases (p38), c-Jun $NH_2$-terminal kinase (JNK) and also the degradation of $I{\kappa}$-$B{\alpha}$ in RAW 264.7 cells stimulated with LPS. Furthermore, SC administration reduced LPS-induced endotoxin shock. Conclusion : SC down-regulated LPS-induced production of inflammatory mediators through inhibition of activation of p38, JNK and degradation of $I{\kappa}$-$B{\alpha}$. Taken together, our results suggest that SC may be a beneficial drug against inflammatory diseases such as sepsis.

Gamma Irradiation Up-regulates Expression of B Cell Differentiation Molecule CD23 by NF-κB Activation

  • Rho, Hyun-Sook;Park, Soon-Suk;Lee, Choong-Eun
    • BMB Reports
    • /
    • v.37 no.4
    • /
    • pp.507-514
    • /
    • 2004
  • Gamma irradiation ($\gamma$-IR) is reported to have diverse effects on immune cell apoptosis, survival and differentiation. In the present study, the immunomodulatory effect of a low dose $\gamma$-IR (5~10 Gy) was investigated, focusing on the role of NF-${\kappa}B$ in the induction of the B cell differentiation molecule, CD23/FceRII. In the human B cell line Ramos, $\gamma$-IR not only induced CD23 expression, but also augmented the IL-4-induced surface CD23 levels. While $\gamma$-IR did not cause STAT6 activation in these cells, it did induce both DNA binding and the transcriptional activity of NF-${\kappa}B$ in the $I{\kappa}B$ degradation-dependent manner. It was subsequently found that different NF-${\kappa}B$ regulating signals modulated the $\gamma$-IR-or IL-4-induced CD23 expression. Inhibitors of NF-${\kappa}B$ activation, such as PDTC and MG132, suppressed the $\gamma$-IR-mediated CD23 expression. In contrast, Ras, which potentiates $\gamma$-IR-induced NF-${\kappa}B$ activity in these cells, further augmented the $\gamma$-IR- or IL-4-induced CD23 levels, The induction of NF-${\kappa}B$ activation and the subsequent up-regulation of CD23 expression by $\gamma$-IR were also observed in monocytic cells. These results suggest that $\gamma$-IR, at specific dosages, can modulate immune cell differentiation through the activation of NF-${\kappa}B$, and this potentially affects the immune inflammatory response that is mediated by cytokines.