DOI QR코드

DOI QR Code

Inhibitory effect of Fagopyrum esculentum on degranulation and production of cytokine in RBL-2H3 cells

교맥의 RBL-2H3 비만세포 탈과립과 cytokine 생산 억제 효과

  • Kang, Kyung-Hwa (Dept. of Oriental Physiology, College of Oriental Medicine, Dong-Eui University) ;
  • Lee, Seung-Yeon (Dept. of Pediatrics, College of Oriental Medicine, Dong-Eui University)
  • 강경화 (동의대학교 한의과대학 생리학교실) ;
  • 이승연 (동의대학교 한의과대학 소아과학교실)
  • Received : 2012.07.17
  • Accepted : 2012.08.03
  • Published : 2012.08.25

Abstract

Objectives : Fagopyrum esculentum(FE) has been used for removal of inflammation of internal organs and treatment of sore and ulcer by heat toxin in Korean herbal medicines. In this study, To investigated the protective effect of FE on allergic response, we determined whether FE inhibits allergic response. Methods : The effect of FE was analyzed by ELISA, RT-PCR and Western blot in RBL-2H3 cells. We investigated cell viability, ${\beta}$-hexosaminidase, as a marker of degranulation, cytokne, and intracellular ROS and MAPK and NF-${\kappa}B$ signaling. Results : We found that FE suppressed ${\beta}$-hexosaminidase release, the production of IL-4 and TNF-${\alpha}$ and intracellular ROS level in RBL-2H3 by the anti-DNP IgE plus DNP-HSA stimulation. FE also significantly inhibited cytokine mRNA expressions, such as IL-$1{\beta}$, IL-2, IL-3, IL-4, IL-5, IL-6, IL-13, TNF-${\alpha}$ and GM-CSF in RBL-2H3. In addition, PF suppressed the phospholyation of ERK1/2, JNK1/2, p38 and $I{\kappa}B{\alpha}$ and NF-${\kappa}B$ signal transduction pathway. Conclusions : Our results indicate that FE protects against allergic response and exerts an anti-inflammatory effect through the inhibition of degranulation and production of cytokines and ROS via the suppression MAPK and NF-${\kappa}B$ of signal transduction. Abbrevations : FE, Fagopyrum esculentum; RBL-2H3, rat basophilic leukemia cell line; ROS, reactive oxygen species; MAPK, Mitogen-activated protein kinase; $NF{\kappa}B$, nuclear factor ${\kappa}B$; $TNF{\alpha}$, Tumor necrosis factor alpha; GM-CSF, Granulocyte macrophage colony-stimulating factor; ERK, extracellular-signal-regulated kinase; JNK, c-Jun NH2-terminal kinase; p38, p38 MAP kinase; $I{\kappa}B{\alpha}$, inhibitory-kappa B alpha.

Keywords

References

  1. Beasley R, Ellwood P, Asher I. International patterns of the prevalence of pediatric asthma. The ISAAC program. Pediatr. Clin. North Am. 2003;50:539-53. https://doi.org/10.1016/S0031-3955(03)00050-6
  2. Jaakkola JJK, Parise H, Kislitsin V, Lebedeva NI, Spengler JD. Asthma, Wheezing, and Allergies in Russian Schoolchildren in Relation to New Surface Materials in the Home. Am J Public Health. 2004;94(4):560-2. https://doi.org/10.2105/AJPH.94.4.560
  3. Amin K. The role of mast cells in allergic inflammation. Respiratory Medicine. 2012;106 (1):9-14. https://doi.org/10.1016/j.rmed.2011.09.007
  4. Brooks AC, Whelan CJ, Purcell WM. Reactive oxygen species generation and histamine release by activated mast cells: modulation by nitric oxide synthase inhibition. Br J Pharmacol. 1999;128(3):585-90. https://doi.org/10.1038/sj.bjp.0702838
  5. Matsui T, Suzuki Y, Yamashita K, Yoshimaru T, Suzuki-Karasaki M, Hayakawa S, et al. Diphenyleneiodonium Prevents Reactive Oxygen Species Generation, Tyrosine Phosphorylation, and Histamine Release in RBL-2H3 Mast Cells. Biochemical and Biophysical Research Communications. 2000; 276(2):742-8. https://doi.org/10.1006/bbrc.2000.3545
  6. Gilfillan AM, Tkaczyk C. Integrated signalling pathways for mast-cell activation. Nature Reviews Immunology. 2006;6(3):218-30. https://doi.org/10.1038/nri1782
  7. Klemm S, Ruland J. Inflammatory signal transduction from the $Fc{\varepsilon}RI$ to NF-${\kappa}B$. Immunobiology. 2006 12;211(10):815-20. https://doi.org/10.1016/j.imbio.2006.07.001
  8. Hofmann AM, Abraham SN. New Roles for Mast Cells in Modulating Allergic Reactions and Immunity Against Pathogens. Curr Opin Immunol. 2009 12;21(6):679-86. https://doi.org/10.1016/j.coi.2009.09.007
  9. Li SQ, Zhang QH. Advances in the development of functional foods from buckwheat. Crit Rev Food Sci Nutr. 2001;41(6):451-64. https://doi.org/10.1080/20014091091887
  10. Heo J. Dongeuibogam. 1st ed. Seoul: Beobin munhwasa. 2007;1808,1718-9.
  11. Jugyakdaesajeon pyeonchanwiwonhoe. Jugyakdaesajeon. Seoul:Jeongdam. 2006;392-3.
  12. Matsuda H, Tewtrakul S, Morikawa T, Nakamura A, Yoshikawa M. Anti-allergic principles from Thai zedoary: structural requirements of curcuminoids for inhibition of degranulation and effect on the release of TNF-$\alpha$ and IL-4 in RBL-2H3 cells. Bioorganic & Medicinal Chemistry. 2004;12(22):5891-8. https://doi.org/10.1016/j.bmc.2004.08.027
  13. Nakano N, Nakao A, Uchida T, Shirasaka N, Yoshizumi H, Okumura K, et al. Effects of arachidonic acid analogs on FcepsilonRImediated activation of mast cells. Biochim. Biophys. Acta. 2005;1738(1-3):19-28. https://doi.org/10.1016/j.bbalip.2005.11.005
  14. Marquardt DL, Walker LL. Dependence of mast cell IgE-mediated cytokine production on nuclear factor-${\kappa}B$ activity. Journal of Allergy and Clinical Immunology. 2000;105 (3):500-5. https://doi.org/10.1067/mai.2000.104942
  15. Granberg M, Fowler C, Jacobsson S. Effects of the cannabimimetic fatty acid derivatives 2-arachidonoylglycerol, anandamide, palmitoylethanolamide and methanandamide upon IgE-dependent antigen-induced $\beta$-hexosaminidase, serotonin and TNFa release from rat RBL-2H3 basophilic leukaemia cells. Naunyn-Schmiedeberg's Archives of Pharmacology. 2001;364(1):66-73. https://doi.org/10.1007/s002100100424
  16. Bischoff SC. Role of mast cells in allergic and non-allergic immune responses: comparison of human and murine data. Nature Reviews Immunology. 2007;7(2):93-104. https://doi.org/10.1038/nri2018
  17. Metcalfe DD, Baram D, Mekori YA. Mast cells. Physiol Rev. 1997;77(4):1033-79.
  18. Kuhn R, Rajewsky K, Muller W. Generation and analysis of interleukin-4 deficient mice. Science. 1991;254(5032):707-10. https://doi.org/10.1126/science.1948049
  19. Hines C. The diverse effects of mast cell mediators. Clinical Reviews in Allergy and Immunology. 2002;22(2):149-60. https://doi.org/10.1385/CRIAI:22:2:149
  20. Grunig G, Warnock M, Wakil AE, Venkayya R, Brombacher F, Rennick DM, et al. Requirement for IL-13 Independently of IL-4 in Experimental Asthma. Science. 1998; 282(5397):2261-3. https://doi.org/10.1126/science.282.5397.2261
  21. Gordon JR, Galli SJ. Mast cells as a source of both preformed and immunologically inducible TNF-$\alpha$/cachectin. Published online: 19 July 1990; | doi:10.1038/346274a. 1990;346(6281):274-6.
  22. Suzuki Y, Yoshimaru T, Matsui T, Inoue T, Niide O, Nunomura S, et al. $Fc{\varepsilon}RI$ Signaling of Mast Cells Activates Intracellular Production of Hydrogen Peroxide: Role in the Regulation of Calcium Signals. J Immunol. 2003;171(11):6119-27. https://doi.org/10.4049/jimmunol.171.11.6119
  23. Swindle EJ, Metcalfe DD, Coleman JW. Rodent and Human Mast Cells Produce Functionally Significant Intracellular Reactive Oxygen Species but Not Nitric Oxide. J. Biol. Chem. 2004;279(47):48751-9. https://doi.org/10.1074/jbc.M409738200
  24. Hur SJ, Park SJ, Jeong CH. Effect of buckwheat extract on the antioxidant activity of lipid in mouse brain and its structural change during in vitro human digestion. J. Agric. Food Chem. 2011;59(19):10699-704. https://doi.org/10.1021/jf202279r
  25. Zhang C, Baumgartner RA, Yamada K, Beaven MA. Mitogen-activated Protein(MAP) Kinase Regulates Production of Tumor Necrosis Factor-$\alpha$ and Release of Arachidonic Acid in Mast Cells Indication of Communication between p38 and p42 Map Kinases. J. Biol. Chem.
  26. Hirasawa N, Sato Y, Fujita Y, Ohuchi K. Involvement of a phosphatidylinositol 3-kinasep38 mitogen activated protein kinase pathway in antigen-induced IL-4 production in mast cells. Biochimica et Biophysica Acta(BBA) -Bioenergetics. 2000;1456(1):45-55. https://doi.org/10.1016/S0005-2728(99)00104-8
  27. Li Q, Verma IM. NF-${\kappa}B$ regulation in the immune system. Nature Reviews Immunology. 2002;2(10):725-34. https://doi.org/10.1038/nri910
  28. Azzolina A, Bongiovanni A, Lampiasi N. Substance P induces TNF-$\alpha$ and IL-6 production through NF${\kappa}B$ in peritoneal mast cells. Biochimica et Biophysica Acta(BBA) - Molecular Cell Research. 2003;1643(1-3):75-83. https://doi.org/10.1016/j.bbamcr.2003.09.003
  29. Karin M. NF-${\kappa}B$ and cancer: Mechanisms and targets. Molecular Carcinogenesis. 2006; 45(6):355-61. https://doi.org/10.1002/mc.20217
  30. Karin M, Greten FR. NF-${\kappa}B$: linking inflammation and immunity to cancer development and progression. Nature Reviews Immunology. 2005;5(10):749-59. https://doi.org/10.1038/nri1703