DOI QR코드

DOI QR Code

Anti-Inflammatory Effect of Fermented Artemisia princeps Pamp in Mice

  • Joh, Eun-Ha (Department of Life and Pharmaceutical Sciences, Kyung Hee University) ;
  • Trinh, Hien-Trung (Department of Life and Pharmaceutical Sciences, Kyung Hee University) ;
  • Han, Myung-Joo (Department of Food and Nutrition, Kyung Hee University) ;
  • Kim, Dong-Hyun (Department of Life and Pharmaceutical Sciences, Kyung Hee University)
  • Received : 2010.05.07
  • Accepted : 2010.06.09
  • Published : 2010.07.31

Abstract

Essential oil-excluded Artemisia princeps Pamp var Ssajuarissuk (AP) was fermented with Lactobacillus brevis K-1, which was isolated from cabbage Kimchi, and the anti-inflammatory effects of AP and fermented AP (FAP) on lipopolysaccharide (LPS)-induced inflammatory response in peritoneal macrophages were investigated. AP and FAP inhibited LPS-induced TNF-$\alpha$, IL-$1{\beta}$, COX-2, iNOS and COX-2 expression, as well as NF-${\kappa}B$ activation. AP and FAP also reduced ear thickness, inflammatory cytokine (TNF-$\alpha$, IL-$1{\beta}$ and IL-6) expression and NF-${\kappa}B$ activation with 12-O-tetradecanoylphorbol-13-acetate (TPA) induced dermatitis in mice. Furthermore, AP and FAP also reduced exudate volume, cell number, protein amount, inflammatory cytokines (TNF-$\alpha$, IL-$1{\beta}$ and IL-6) expression and NF-${\kappa}B$ activation in carrageenan-induced air pouch inflammation in mice. The inhibitory effects of FAP were more potent than those of non-fermented AP. Based on these findings, we propose that FAP can improve inflammatory diseases, such as dermatitis, by inhibiting the NF-${\kappa}B$ pathway.

Keywords

References

  1. Bae, E. A., Hyun, Y. J., Choo, M. K., Oh, J. K., Ryu, J. H. and Kim, D. H. (2004). Protective effect of fermented red ginseng on a transient focal ischemic rats. Arch. Pharm. Res. 27, 1136-1140. https://doi.org/10.1007/BF02975119
  2. Bae, E. A., Min, S. W., Lee, B., Kim, N. J., Baek, N. I., Han, E. J. and Chung, H. G., and Kim, D. H. (2007). Antiasthmic effect of fermented Artemisia princeps in asthmic mice induced by ovalbumin. J. Microbiol. Biotechnol. 17, 1554-1557.
  3. Bielory, L. (2004). Complementary and alternative interventions in asthma, allergy, and immunology. Ann. Allergy Asthma Immunol. 93(2 Suppl 1), S45-54. https://doi.org/10.1016/S1081-1206(10)61486-X
  4. Friedman, E. S., LaNatra, N. and Stiller, M. J. (2002). NSAIDs in dermatologic therapy: review and preview. J. Cutan. Med. Surg. 6, 449-459. https://doi.org/10.1007/s10227-001-0137-3
  5. Hernandez, G. L., Volpert, O. V., Iniguez, M. A., Lorenzo, E., Martinez-Martinez, S., Grau, R., Fresno, M. and Redondo, J. M. (2001). Selective inhibition of vascular endothelial growth factor-mediated angiogenesis by cyclosporin A: roles of the nuclear factor of activated T cells and cyclooxygenase 2. J. Exp. Med. 193, 607-620. https://doi.org/10.1084/jem.193.5.607
  6. Joh, E. H., Lee, I. A., Han, S. J., Chae, S. and Kim, D. H. (2010). Lancemaside A ameliorates colitis by inhibiting NF-kappaB activation in TNBS-induced colitis mice. Int. J. Colorectal Dis. 25, 545-551. https://doi.org/10.1007/s00384-009-0858-0
  7. Kim, D. H. (2002). Herbal medicines are activated by intestinal microflora. Nat. Prod. Sci. 8, 35-43.
  8. Kim, S. H., Lee, S. D., Kim, W. B., Lee, M. G. and Kim, N. D. (1997). Determination of a new antiulcer agent, eupatilin, in rat plasma, bile, urine, liver homogenate by high performance liquid chromatography. Res. Commun. Mol. Path. Pharmacol. 97, 165-170.
  9. Kobashi, K. and Akao, T. (1997). Relation of intestinal bacteria to pharmacological effects of glycosides. Biosci. Microflora, 16, 1-7. https://doi.org/10.12938/bifidus1996.16.1
  10. Lee, J. Y., Shin, J. W., Chun, K. S., Park, K. K., Chung, W. Y., Bang, Y. J., Sung, J. H. and Surh, Y. J. (2005). Antitumor promotional effects of a novel intestinal bacterial metabolite (IH-901) derived from the protopanaxadiol-type ginsenosides in mouse skin. Carcinogenesis 26, 359-367. https://doi.org/10.1093/carcin/bgh313
  11. Lee, S. H., Shin, Y. W., Bae, E. A., Lee, B., Min, S., Baek, N. I., Chung, H. G., Kim, N. J. and Kim, D. H. (2006). Lactic acid bacteria increase antiallergic effect of Artemisia princeps Pampanini SS-1. Arch. Pharm. Res. 29, 752-756. https://doi.org/10.1007/BF02974075
  12. Min, S. W., Kim, N. J., Baek, N. I. and Kim, D. H. (2009). Inhibitory effect of eupatilin and jaceosidin isolated from Artemisia princeps on carrageenan-induced inflammation in mice. J. Ethnopharmacol. 125, 497-500. https://doi.org/10.1016/j.jep.2009.06.001
  13. Park, B. K., Heo, M. Y., Pak, H. and Kim, H. P. (2001). Inhibition of TPA-induced cyclooxygenase-2 and skin inflammation in mice by wogonin, a plant flavone from Scutellaria radix. Eur. J. Pharmacol. 425, 153-158. https://doi.org/10.1016/S0014-2999(01)01187-6
  14. Park, Y. J., Liu, G., Tsuruta, Y., Lorne, E. and Abraham, E. (2009). Participation of the urokinase receptor in neutrophil efferocytosis. Blood 114, 860-870. https://doi.org/10.1182/blood-2008-12-193524
  15. Plaut, M., Pierce, J. H., Whatson, C., Hanley-Hyde, J., Nordan, R. P. and Paul, W. E. (1989). Mast cell lines produce lymphokines in response to cross-linkage of Fc epsilonRI or to calcium ionopore. Nature 339, 64-67. https://doi.org/10.1038/339064a0
  16. Reynolds, N. J., Voorhees, J. J. and Fisher, G. H. (1998). Cyclsoporin A inhibits 12-O-tetradecanoyl-phorbol-13-acetateinduced cutaneous inflammation in severe combined immunodeficient mice that lack fuctional lymphocytes. Brit. J. Dermatol. 139, 16-22. https://doi.org/10.1046/j.1365-2133.1998.02307.x
  17. Ryu, S. N., Han, S. S., Yang, J. J., Jeong, H. G. and Kang, S. S. (2005). Variation of eupatilin and jaceosidin content of mugwort. Korean J. Crop Sci. 50, 204-207.
  18. Sakuma, S., Higashi, Y., Sato, N., Sasakawa, T., Sengoku, T., Ohkubo, Y., Amaya, T. and Goto, T. (2001). Tacrolimus suppressed the production of cytokines involved in atopic dermatitis by direct stimulation of human PBMC system (Comparison with steroids). Int. Immunopharmacol. 1, 1219-1226. https://doi.org/10.1016/S1567-5769(01)00059-5
  19. Schafer-Korting, M., Schmid, M. H. and Korting, H. C. (1996). Topical glucocorticoids with improved risk-benefit ratio. Drug Safety 14, 375-385.
  20. Shin, Y. W., Bae, E. A., Kim, S. S., Lee, Y. C., Lee, B. Y. and Kim, D. H. (2006a). The effects of ginsenoside Re and its metabolite, ginsenoside Rh1, on 12-O-tetradecanoylphorbol 13-acetate- and oxazolone-induced mouse dermatitis models. Planta Med. 72, 376-378. https://doi.org/10.1055/s-2005-916217
  21. Shin, Y. W., Bae, E. A., Lee, B., Min, S., Lee, J. H., Baek, N. I., Ryu, S. N., Chung, H. G., Kim, N. J. and Kim, N. J. (2006b). Antiallergic effect of Artemisia princeps SJ-1 and SS-1 cultivated in Ganghwado. Nat. Prod. Sci. 12, 67-73.
  22. Simons, F. E. R. (1992). The antiallergic effects of antihistamines (H1-receptor antagonists). J. Allergy Clin. Immunol. 90, 705-715. https://doi.org/10.1016/0091-6749(92)90156-V
  23. Stevens, R. L. and Austen, K. F. (1989). Recent advances in the cellular and molecular biology of mast cells. Immunol. Today 10, 381-386. https://doi.org/10.1016/0167-5699(89)90272-7
  24. Wuthrich, B. (1989). Epidemiology of the allergic diseases: are they really on the increase? Int. Arch. Allergy Appl. Immunol. 90(suppl. 1), 3-10. https://doi.org/10.1159/000235067

Cited by

  1. In vitro and in vivo immunostimulatory effects of hot water extracts from the leaves of Artemisia princeps Pampanini cv. Sajabal vol.149, pp.1, 2013, https://doi.org/10.1016/j.jep.2013.06.030
  2. Evaluation ofIn VitroAnti-Inflammatory Activities and Protective Effect of Fermented Preparations of Rhizoma Atractylodis Macrocephalae on Intestinal Barrier Function against Lipopolysaccharide Insult vol.2013, 2013, https://doi.org/10.1155/2013/363076
  3. Fermentation, a feasible strategy for enhancing bioactivity of herbal medicines vol.81, 2016, https://doi.org/10.1016/j.foodres.2015.12.026
  4. Analysis of Seasonal Variations of the Volatile Constituents in Artemisia princeps (Japanese Mugwort) Leaves by Metabolomic Approach vol.14, pp.8, 2019, https://doi.org/10.1177/1934578x19872600