Browse > Article
http://dx.doi.org/10.5657/FAS.2011.0267

Anti-inflammatory Effects of Ethanolic Extracts from Codium fragile on LPS-Stimulated RAW 264.7 Macrophages via Nuclear Factor kappaB Inactivation  

Yoon, Ho-Dong (Food and Safety Research Division, National Fisheries Research and Development Institute)
Jeong, Eun-Ji (Department of Food Science and Nutrition, Pukyong National University)
Choi, Ji-Woong (Department of Food Science and Nutrition, Pukyong National University)
Lee, Min-Sup (Department of Food Science and Nutrition, Pukyong National University)
Park, Myoung-Ae (Pathology Division, National Fisheries Research and Development Institute)
Yoon, Na-Young (Food and Safety Research Division, National Fisheries Research and Development Institute)
Kim, Yeon-Kye (Food and Safety Research Division, National Fisheries Research and Development Institute)
Cho, Deuk-Moon (Department of Food and Nutrition, Dong-Pusan College)
Kim, Jae-Il (Department of Food Science and Nutrition, Pukyong National University)
Kim, Hyeung-Rak (Department of Food Science and Nutrition, Pukyong National University)
Publication Information
Fisheries and Aquatic Sciences / v.14, no.4, 2011 , pp. 267-274 More about this Journal
Abstract
Bacterial lipopolysaccharide (LPS) induces expression of pro-inflammatory cytokines and enzymes producing nitric oxide (NO) and prostaglandins (PGs) in immune cells. This process is mediated by the activation of nuclear factor kappaB (NF-${\kappa}B$). In this study, we investigated the anti-inflammatory characteristics of Codium fragile ethanolic extract (CFE) mediated by the regulation of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) using LPS-stimulated murine macrophage RAW 264.7 cells. CFE significantly inhibited LPS-induced NO and $PGE_2$ production in a dose-dependent manner and suppressed the expression of iNOS and COX-2 proteins in LPS-stimulated RAW 264.7 cells with no cytotoxicity. Pro-inflammatory cytokines, such as interleukin (IL)-$1{\beta}$, IL-6, and tumor necrosis factor-${\alpha}$, were significantly reduced by treatment of CFE in LPS-stimulated RAW 264.7 cells. CFE inhibited the promoter activity of (NF)-${\kappa}B$ in LPS-stimulated macrophages. Treatment with CFE suppressed translocation of the NF-${\kappa}B$ p65 subunit by preventing proteolytic degradation of inhibitor of ${\kappa}B-{\alpha}$. These results indicate that the CFE-mediated inhibition of NO and $PGE_2$ production in LPS-stimulated RAW 264.7 cells is mediated through the NF-${\kappa}B$-dependent transcriptional downregulation of iNOS and COX-2, suggesting the potential of CFE as a nutraceutical with anti-inflammatory activity.
Keywords
Codium fragile; Anti-inflammation; iNOS; COX-2; TNF-${\alpha}$; IL-$1{\beta}$; IL-6;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Tseng CK and Chang CF. 1984. Chienese seaweeds in herbal medicine. Hydrobiologia 116/117, 152-154.   DOI   ScienceOn
2 Vane JR, Mitchell JA, Appleton I, Tomlinson A, Bishop-Bailey D, Croxtall J and Willoughby DA. 1994. Inducible isoforms of cyclooxygenase and nitric-oxide synthase in inflammation. Proc Natl Acad Sci U S A 91, 2046-2050.   DOI   ScienceOn
3 Woo MN, Jeon SM, Shin YC, Lee MK, Kang MA and Choi MS. 2009. Anti-obese property of fucoxanthin is partly mediated by altering lipid-regulating enzymes and uncoupling proteins of visceral adipose tissue in mice. Mol Nutr Food Res 53, 1603-1611.   DOI   ScienceOn
4 Xie QW, Whisnant R and Nathan C. 1993. Promoter of the mouse gene encoding calcium-independent nitric oxide synthase confers inducibility by interferon $\gamma$ and bacterial lipopolysaccharide. J Exp Med 177, 1779-1784.   DOI   ScienceOn
5 Yoshimura A. 2006. Signal transduction of inflammatory cytokines and tumor development. Cancer Sci 97, 439-447.   DOI   ScienceOn
6 Zhang G and Ghosh S. 2000. Molecular mechanisms of $NF-{\kappa}B$ activation induced by bacterial lipopolysaccharide through Toll-like receptors. J Endotoxin Res 6, 453-457.
7 Li Q and Verma IM. 2002. $NF-{\kappa}B$ regulation in the immune system. Nat Rev Immunol 2, 725-734.   DOI   ScienceOn
8 Libby P. 2006. Inflammation and cardiovascular disease mechanisms. Am J Clin Nutr 83, 456S-460S.
9 Makarov SS. 2001. $NF-{\kappa}B$ in rheumatoid arthritis: a pivotal regulator of inflammation, hyperplasia, and tissue destruction. Arthritis Res 3, 200-206.   DOI   ScienceOn
10 Marks-Konczalik J, Chu SC and Moss J. 1998. Cytokine-mediated transcriptional induction of the human inducible nitric oxide synthase gene requires both activator protein 1 and nuclear factor ${\kappa}B$-binding sites. J Biol Chem 273, 22201-22208.   DOI   ScienceOn
11 Nathan C. 1992. Nitric oxide as a secretory product of mammalian cells. FASEB J 6, 3051-3064.
12 Ohta Y, Lee JB, Hayashi K and Hayashi T. 2009. Isolation of sulfated galactan from Codium fragile and its antiviral effect. Biol Pharm Bull 32, 892-898.   DOI   ScienceOn
13 Packard RR and Libby P. 2008. Inflammation in atherosclerosis: from vascular biology to biomarker discovery and risk prediction. Clin Chem 54, 24-38.
14 Pan MH, Hong HM, Lin CL, Jhang AZ, Tsai JH, Badmaev V, Nagabhushanam K, Ho CT and Chen WJ. 2011. Se-methylselenocysteine inhibits lipopolysaccharide-induced $NF-{\kappa}B$ activation and iNOS induction in RAW 264.7 murine macrophages. Mol Nutr Food Res 55, 723-732.   DOI   ScienceOn
15 Jin M, Suh SJ, Yang JH, Lu Y, Kim SJ, Kwon S, Jo TH, Kim JW, Park YI, Ahn GW, Lee CK, Kim CH, Son JK, Son KH and Chang HW. 2010. Anti-inflammatory activity of bark of Dioscorea batatas DECNE through the inhibition of iNOS and COX-2 expressions in RAW264.7 cells via $NF-{\kappa}B$and ERK1/2 inactivation. Food Chem Toxicol 48, 3073-3079.   DOI   ScienceOn
16 Shin JS, Park YM, Choi JH, Park HJ, Shin MC, Lee YS and Lee KT. 2010. Sulfuretin isolated from heartwood of Rhus verniciflua inhibits LPS-induced inducible nitric oxide synthase, cyclooxygenase-2, and pro-inflammatory cytokines expression via the downregulation of $NF-{\kappa}B$ in RAW 264.7 murine macrophage cells. Int Immunopharmacol 10, 943-950.   DOI   ScienceOn
17 Solinas G, Marchesi F, Garlanda C, Mantovani A and Allavena P. 2010. Inflammation-mediated promotion of invasion and metastasis. Cancer Metastasis Rev 29, 243-248.   DOI   ScienceOn
18 Heo SJ, Yoon WJ, Kim KN, Ahn GN, Kang SM, Kang DH, Affan A, Oh C, Jung WK and Jeon YJ. 2010. Evaluation of anti-inflammatory effect of fucoxanthin isolated from brown algae in lipopolysaccharide-stimulated RAW 264.7 macrophages. Food Chem Toxicol 48, 2045-2051.   DOI   ScienceOn
19 Jung WK, Ahn YW, Lee SH, Choi YH, Kim SK, Yea SS, Choi I, Park SG, Seo SK, Lee SW and Choi IW. 2009. Ecklonia cava ethanolic extracts inhibit lipopolysaccharide-induced cyclooxygenase-2 and inducible nitric oxide synthase expression in BV2 microglia via the MAP kinase and $NF-{\kappa}B$ pathways. Food Chem Toxicol 47:410-417.   DOI   ScienceOn
20 Kim AR, Shin TS, Lee MS, Park JY, Park KE, Yoon NY, Kim JS, Choi JS, Jang BC, Byun DS, Park NK and Kim HR. 2009. Isolation and identification of phlorotannins from Ecklonia stolonifera with antioxidant and anti-inflammatory properties. J Agric Food Chem 57, 3483-3489.   DOI   ScienceOn
21 Kim EY and Moudgil KD. 2008. Regulation of autoimmune inflammation by pro-inflammatory cytokines. Immunol Lett 120, 1-5.   DOI   ScienceOn
22 Lee JB, Ohta Y, Hayashi K and Hayashi T. 2010. Immunostimulating effects of a sulfated galactan from Codium fragile. Carbohydr Res 345, 1452-1454.   DOI   ScienceOn
23 Kim MM and Kim SK. 2010. Effect of phloroglucinol on oxidative stress and inflammation. Food Chem Toxicol 48, 2925-2933.   DOI   ScienceOn
24 Kim YC, An RB, Yoon NY, Nam TJ and Choi JS. 2005. Hepatoprotective constituents of the edible brown alga Ecklonia stolonifera on tacrine-induced cytotoxicity in Hep G2 cells. Arch Pharm Res 28, 1376-1380.   DOI   ScienceOn
25 Lebovic DI, Bentzien F, Chao VA, Garrett EN, Meng YG and Taylor RN. 2000. Induction of an angiogenic phenotype in endometriotic stromal cell cultures by interleukin-1$\beta$. Mol Hum Reprod 6, 269-275.   DOI   ScienceOn
26 Abad MJ, Bedoya LM and Bermejo P. 2008. Natural marine anti-inflammatory products. Mini Rev Med Chem 8, 740-754.   DOI   ScienceOn
27 Beutler B and Cerami A. 1989. The biology of cachectin/TNF--a primary mediator of the host response. Annu Rev Immunol 7, 625-655.   DOI   ScienceOn
28 Blunt JW, Copp BR, Munro MH, Northcote PT and Prinsep MR. 2010. Marine natural products. Nat Prod Rep 27, 165-237.   DOI   ScienceOn
29 Chen Z, Hagler J, Palombella VJ, Melandri F, Scherer D, Ballard D and Maniatis T. 1995. Signal-induced site-specific phosphorylation targets $I{\kappa}B{\alpha}$ to the ubiquitin-proteasome pathway. Genes Dev 9, 1586-1597.   DOI   ScienceOn
30 Chung EY, Kim BH, Hong JT, Lee CK, Ahn B, Nam SY, Han SB and Kim Y. 2011. Resveratrol down-regulates interferon-$\gamma$-inducible inflammatory genes in macrophages: molecular mechanism via decreased STAT-1 activation. J Nutr Biochem 22, 902-909.   DOI   ScienceOn
31 D'Acquisto F, Iuvone T, Rombola L, Sautebin L, Di Rosa M and Carnuccio R. 1997. Involvement of $NF-{\kappa}B$ in the regulation of cyclooxygenase-2 protein expression in LPS-stimulated J774 macrophages. FEBS Lett 418, 175-178.   DOI   ScienceOn
32 Dinarello CA. 1999. Cytokines as endogenous pyrogens. J Infect Dis 179(Suppl 2), S294-S304.   DOI   ScienceOn
33 Ganesan P, Matsubara K, Ohkubo T, Tanaka Y, Noda K, Sugawara T and Hirata T. 2010. Anti-angiogenic effect of siphonaxanthin from green alga, Codium fragile. Phytomedicine 17, 1140-1144.   DOI   ScienceOn
34 Guha M and Mackman N. 2001. LPS induction of gene expression in human monocytes. Cell Signal 13, 85-94.   DOI   ScienceOn