• Title/Summary/Keyword: IL-$1{\beta}$ TNF-${\alpha}$

Search Result 1,239, Processing Time 0.032 seconds

Inhibitory Effect of Ginsenoside Rg5 and Its Metabolite Ginsenoside Rh3 in an Oxazolone-Induced Mouse Chronic Dermatitis Model

  • Shin, Yong-Wook;Bae, Eun-Ah;Kim, Dong-Hyun
    • Archives of Pharmacal Research
    • /
    • v.29 no.8
    • /
    • pp.685-690
    • /
    • 2006
  • The effect of a main constituent ginsenoside Rg5 isolated from red ginseng and its metabolite ginsenoside Rh3 in a chronic dermatitis model was investigated. Ginsenosides Rg5 and Rh3 suppressed swelling of oxazolone-induced mouse ear contact dermatitis. These ginsenosides also reduced mRNA expressions of cyclooxygenase-2, interleukin $(IL)-1{\beta}$, tumor necrosis factor $(TNF)-{\alpha}$ and interferon $(IFN)-{\gamma}$. The inhibition of ginsenoside Rh3 was more potent than that of ginsenoside Rg5. These findings suggest that ginsenoside Rh3 metabolized from ginsenoside Rg5 may improve chronic dermatitis or psoriasis by the regulation of $IL-1{\beta}$ and $TNF-{\alpha}$ produced by macrophage cells and of $IFN-{\gamma}$ produced by Th cells.

Effect of Gamisaengkiokhonggo on the wound healimg (加味生肌玉紅膏가 生肌에 미치는 影響)

  • Kim, Nam-Uk;No, Seok-Seon
    • The Journal of Korean Medicine Ophthalmology and Otolaryngology and Dermatology
    • /
    • v.12 no.2
    • /
    • pp.1-19
    • /
    • 1999
  • This study was carried out to prove the effect of GMSKOHG on the cytotoxicity of human monocyte, the inhibition for prostaglandins($PGE_2$) and interleukins($IL-l.{\Beta}$), the produce of $TNF-{\alpha}$, and the size of mouse wounded. The result were obtainde as follows : 1. $0.001\%\;and\;0.0005\%$ of GMSKOHG was not showed the cytotoxicity of human monocyte. 2. $0.01\%\;and\;0.005\%$ of GMSKOHG inhibited the production of interleukins($IL-l{\Beta}$) in the human monocyte, but $0.001\%\;and\;0.0005\%$ of GMSKOHG didn't. 3. $0.001\%$ of GMSKOHG inhibited the production of $TNF-{\alpha}$ in the human monocyte. 4. $0.01\$(MeOH 및 EtOH) of GMSKOHG inhibited the production of prostaglandins($PGE_2$) in the human monocyte. 5. Wound healing was not effect.

  • PDF

Anti-inflammatory Activity of the Methanol Extract from the Stem of Coriandrum Sativum in RAW 264.7 Cells

  • Jung, Ji Yun;Park, Chung A
    • The Korea Journal of Herbology
    • /
    • v.33 no.5
    • /
    • pp.73-79
    • /
    • 2018
  • Objectives : Coriandrum sativum is a medicinal herb that is used to enhance organoleptic quality and food flavor and as source of natural antioxidants. This research investigated the anti-inflammatory activity of Coriandrum sativum stem methanol extract (CSSE) using RAW 264.7 cells. Methods : Production of tumor necrosis factor-${\alpha}$(TNF-${\alpha}$), interleukin (IL)-$1{\beta}$, IL-6, and nitric oxide (NO) in the culture supernatant, protein expression of inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), and nuclear factor-kappa B (NF-${\kappa}B$) in the extract were assayed. Results : Treatment with CSSE ($100{\mu}g/m{\ell}$) resulted in inhibited levels of protein expression of lipopolysaccharide- (LPS-) induced iNOS, COX-2, and NF-${\kappa}B$ as well as production of TNF-${\alpha}$, IL-$1{\beta}$, IL-6, and NO induced by LPS. Conclusions : These results demonstrate that CSSE exhibits anti-inflammatory activities via decreasing production of pro-inflammatory mediators through suppression of the pathways of NF-${\kappa}B$ in LPS-induced RAW 264.7 cells. Thus, CSSE may have therapeutic potential for a variety of inflammation-mediated diseases.

Anti-inflammatory effect of chloroform fraction of Coptidis rhizoma on the production of inflammatory mediators from LPS-stimulated BV2 microglial cells (황련 클로로포름 분획물의 뇌신경소교세포로부터 염증매개물질 생성억제 효능 연구)

  • Park, Yong-Ki;Lee, Kyuong-Yeol
    • The Korea Journal of Herbology
    • /
    • v.22 no.4
    • /
    • pp.109-116
    • /
    • 2007
  • Objectives : In the present study, we investigated anti-inflammatory effects of chloroform fraction of Coptidis rhizoma (CR-C) on the production of inflammatory mediators such as nitric oxide (NO) and proinflammatory cytokines, tumor necrosis factor-alpha (TNF-${\alpha}$) and interleukin-1beta (IL-1${\beta}$) in LPS-stimulated BV2 microglial cells. Methods : Copriditis rhizoma was extracted with 80% methanol, and then extracted with chloroform. BV2 cells were pre-treated with CR-C, and stimulated with LPS. The cytotoxicity was determined by MTT assay. The production of NO and cytokines was measured by Griess assay and ELISA. The mRNA expression of inducible nirtic oxide synthase (iNOS) and cytokines were determined by RT-PCR. Results : CR-C significantly inhibited the production of NO. TNF-${\alpha}$ and IL-1${\beta}$ in a dose-dependent manner in LPS-stimulated BV2 cells. In addition, CR-C suppressed the mRNA expressions of iNOS and inflammatory cytokines induced by LPS stimulation. These results indicate that CR-C was involved in anti-inflammatory effects in activated microglia. Conclusion : The present study suggests that chloroform extract of Coptidis rhizoma can be useful as a potential anti-inflammatory agent for treatment of various neurodegenerative diseases.

  • PDF

Generation of Antagonistic RNA Aptamers Specific to Proinflammatory Cytokine Interleukin-32

  • Kim, Se-Ho;Kim, Jung-Hee;Yoon, Su-Jin;Kim, Keun-Sik;Yoon, Moon-Young;Yoon, Do-Young;Kim, Dong-Eun
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.12
    • /
    • pp.3561-3566
    • /
    • 2010
  • Interleukin 32 (IL-32) is a recently identified cytokine that induces major proinflammatory cytokines such as $TNF{\alpha}$ and IL-$1{\beta}$, which play an important role in chronic inflammatory diseases. To antagonize the biological function of IL-32 in cells, we generated RNA aptamers that could bind specifically to IL-32 protein. The highest affinity aptamer, AC3-3, successfully antagonized IL-32 by abolishing the induction of $TNF{\alpha}$ in the human lung carcinoma cells expressing IL-32. This aptamer could be used as a potent and selective antagonist against IL-32 to further elucidate the roles of IL-32 in chronic inflammatory diseases, as well as a therapeutic agent.

Differential Alterations of Endotoxin-induced Cytokine Expression and Mitogen-activated Protein Kinase Activation by Mercury in Mouse Kidney

  • Kim, Sang-Hyun;Kim, Dae-Keun;Shin, Tae-Yong;Choi, Cheol-Hee
    • Toxicological Research
    • /
    • v.20 no.3
    • /
    • pp.233-239
    • /
    • 2004
  • The present study was designed to determine the impact of mercury on endotoxin-induced inflammatory cytokine expression and corresponding signal transduction in mouse kidney. Male BALB/c mice were exposed continuously to 0, 0.3, 1.5, 7.5, or 37.5 ppm of mercury in drink-ing water for 14 days and at the end of the treatment period, lipopolysaccharide (LPS, 0.5 mg/kg) was injected intraperitoneally 2 h prior to euthanasia. The doses of mercury and LPS did not cause hepatotoxicity or renal toxicity as indicated by unaltered plasma alanine aminotransferase and aspartate aminotransferase levels, and terminal UTP nucleotide end-labeling assay from kidney, respectively. Mercury decreased kidney glutathione (GSH) and with LPS, it additively decreased GSH. Mercury activated p38 mitogen-activated protein kinase (MAPK) and additively increased LPS-induced p38 MAPK phosphorylation. In contrast, mercury inhibited LPS-induced activation of extra-cellular signal-regulated kinase (ERK) but had no effect alone. Mercury increased the gene expression of tumor necrosis factor $\alpha$ (TN F$\alpha$) and potentiated LPS-induced TNF$\alpha$ expression. Mercury did not affect LPS-induced interleukin-1$\beta$ (IL-1$\beta$) expression but decreased LPS-induced IL-6 expression. These results suggest that low levels of mercury might augment LPS-induced TNF$\alpha$ expression by altering GSH and p38 MAPK. Mercury modulates LPS-induced p38 and ERK activation, and downstream TNF$\alpha$ and IL-6 expression in kidney, respectively.

Effects of CpG Oligodeoxynucleotides on Immune Responses and Expression of Cytokine Genes in Cultured Olive Flounder Paralichthys olivaceus

  • Ahn, kyoung-Jin;Nam, Bo-Hye;Kim, Young-Ok;Kang, Jung-Ha;Kim, Bong-Seok;Jee, Young-Ju;Lee, Sang-Jun
    • Fisheries and Aquatic Sciences
    • /
    • v.10 no.1
    • /
    • pp.1-7
    • /
    • 2007
  • The induction of cellular and humoral immunity and cytokine gene expression by synthetic CpG oligodexoynucleotides (CpG-ODNs) has not been investigated systematically in olive flounder Paralichthys olivaceus in vivo. We optimized the proper concentration of CpG-ODNs using an in vitro assay for the superoxide anion $(O_2^-)$. CpG-ODNs induced $O_2^-$ and nitric oxide (NO) production, lysozyme activity, and the proinflammatory cytokine gene expression of $IL-1{\beta}$ and $TNF-{\alpha}$ in olive flounder significantly in vivo, whereas non-CpG-ODNs did not produce these effects or produced them to a lesser extent. This implied that CpG-ODNs could stimulate cellular and humoral immunity and cytokine gene expression in olive flounder. This is the first evidence of NO production and the first study on the mRNA expression of the proinflammatory cytokine genes $IL-1{\beta}$ and $TNF-{\alpha}$ in olive flounder in response to CpG-ODNs. Comparison of the variation in NO production and lysozyme activity to that of other studies led us to postulate that a group-specific difference exists in the immune responses of olive flounder against CpG-ODNs. Furthermore, the detailed immunostimulatory spectrum of CpG-ODNs in olive flounder could be a useful index with which to analyze the effect of CpG-ODNs against the challenge test prior to field applications.

Effects of Amomum villosum(AMV) Extract on the Alzheimer's Disease Model (사인(砂仁)이 Alzheimer's Disease 병태 모델에 미치는 영향)

  • Choi Bo-Yun;Jung In-Chul;Lee Sang-Ryong
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.20 no.1
    • /
    • pp.43-51
    • /
    • 2006
  • This experiment was designed to investigate the effect of Amomum villosum(AMV) on the Alzheimer's disease. The effects of AMV extract on amyloid precursor proteins(APP), acetylcholinesterase(AChE), glial fibrillary acidic protein(GFAP) mRNA of PC-12 cell line treated by amyloid $\beta$ protein($A{\beta}$) : IL-$1{\beta}$, IL-6, TNF-$\alpha$ mRNA of THP-1 cell line treated by lipopolysaccharide(LPS) : AChE activity of PC-12 cell lysate treated by $A{\beta}$ : serum glucose, uric acid, AChE activity of memory deficit rats induced by scopolamine : behavior of memory deficit mice induced by scopolamine were investigated, respectively. AMV extract suppressed APP, AChE, GFAP mRNA in PC-12 cell treated by $A{\beta}$ : IL-$1{\beta}$, IL-6, TNF-$\alpha$ mRNA in THP-1 cell treated by LPS , AChE activity in cell lysate of PC-12 cell treated by $A{\beta}$. AMV extract increased glucose, decreased uric acid and AChE significantly in the serum of the memory deficit rats induced by scopolamine. AMV extract group showed significantly inhibitory effect on the memory deficit of mice induced by scopolamine in the experiment of Morris water maze. According to the above results, it is suggested that AMV extract might be usefully applied for prevention and treatment of Alzheimer's disease.

The Inhibitory Effect of Nicotine on TNF-α Expression in Human Fetal Astrocytes (담배 니코틴에 의한 사람 태아 성상세포에서 종양괴사인자(TNF-α)의 발현 억제작용)

  • Son, Il-Hong;Lee, Sung-Ik;Yang, Hyun-Duk;Han, Sun-Jung;Suk, Seung-Han;Lee, Jai-Kyoo;Kim, Jae-Hyun;Park, Joo-Young;Moon, Hyung-In;Lee, Sung-Soo
    • Journal of the Korean Chemical Society
    • /
    • v.51 no.3
    • /
    • pp.251-257
    • /
    • 2007
  • The Tumor necrosis factor-α, (TNF-α), is involved in the pathogenesis of multiple sclerosis and contributes to the degeneration of oligodendrocytes as well as neurons. Nicotine has been found to have immunosuppressive and inflammation-suppressing effects. Astrocytes, the major glial cells in the CNS, are capable of producing TNF-α at both the mRNA and protein levels in response to interleukin-1 (IL-1) or TNF-α. Nicotine has been shown to influence glial cell functions. To order to explore the role of astrocytes in the production of TNF-α, astrocytes were pretreated with nicotine and are stimulated with IL-1β to determine their effects on TNF-α production. The results are as follows. Cytotoxic effects of nicotine on human fetal astrocytes were noted above 10 μg/ml of nicotine. The effect of IL-1β on TNF-α mRNA expression in primary cultured human fetal astrocytes was maximal at 2 h after IL- 1β(100 pg/ml) treatment. Human fetal astrocytes were pretreated with 0.1, 1, and 10 μg/ml of nicotine and then stimulated with IL-1β (100 pg/ml) for 2 h. The inhibitory effect of nicotine on expressions of TNF-α mRNA in human fetal astrocytes with pretreated 0.1 μg/ml of nicotine is first noted at 8 hr, and the inhibitory effect is maximal at 12 h. The inhibitory effect at 1 μg/ml of nicotine is inhibited maximal at 24 h. Nicotine at 0.1, 1 and 10 μg/ml concentrations significantly inhibits IL-1β-induced NF-κB activation. Collectively, this study indicates that nicotine might inhibit the expression of TNF-α in activated human fetal astrocytes.

Single Nucleotide Polymorphisms of Cytokine Genes are Associated with Fibrosis of the Intrahepatic Bile Duct Wall in Human Clonorchiasis

  • Chung, Byung-Suk;Lee, Jeong-Keun;Choi, Min-Ho;Park, Myoung-Hee;Choi, Dong-Il;Hong, Sung-Tae
    • Parasites, Hosts and Diseases
    • /
    • v.47 no.2
    • /
    • pp.145-151
    • /
    • 2009
  • This study examined the association of cytokine gene polymorph isms with intrahepatic bile duct wall fibrosis in human clonorchiasis. A total of 240 residents in Heilongjiang, China underwent ultrasonography, blood sampling, and stool examination. Single nucleotide polymorphism (SNP) sites for $IFN-{\gamma}$ (+874 T/A), IL-10 (-1,082 G/A, -819 C/T, -592 C/A), $TNF-{\alpha}$ (-308 G/A), and $TGF-{\beta}1$ (codon 10 T/C, codon 25 G/C) genes were observed with the TaqMan allelic discrimination assay. No significant correlation was observed between individual cytokine gene polymorphisms and intrahepatic duct dilatation (IHDD). Among individuals with clonorchiasis of moderate intensity, the incidence of IHDD was high in those with $IFN-{\gamma}$ intermediate-producing genotype, +874AT (80.0%, P=0.177), and in those with $TNF-{\alpha}$ low-producing genotype, -308GG (63.0%, P=0.148). According to the combination of $IFN-{\gamma}$ and $TNF-{\alpha}$ genotypes, the risks for IHDD could be stratified into high (intermediate-producing $IFN-{\gamma}$ and low producing $TNF-{\alpha}$), moderate, and low (low-producing $IFN-{\gamma}$ and high producing $TNF-{\alpha}$) risk groups. The incidence of IHDD was significantly different among these groups (P=0.022): 88.9% (odds ratio, OR=24.0) in high, 56.5% (OR=3.9) in moderate, and 25.0% (OR=1) in low risk groups. SNP of $IFN-{\gamma}$ and $TNF-{\alpha}$ genes may contribute to the modulation of fibrosis in the intrahepatic bile duct wall in clonorchiasis patients.