• Title/Summary/Keyword: IFNs

Search Result 19, Processing Time 0.023 seconds

Host Cell-Intrinsic Antiviral Defense Induced by Type I Interferons

  • Asano, Atsushi
    • Korean Journal of Agricultural Science
    • /
    • v.35 no.2
    • /
    • pp.177-182
    • /
    • 2008
  • Type I Interferons (IFNs) are potent antiviral cytokines that modulate both innate immunity and adaptive immunity. Type I IFNs are immediately induced by viral infection, and stimulate production of a broad range of gene products such as double-stranded RNA-activated protein kinase (PKR), 2' 5'-oligoadenylate synthetase (OAS)/RNaseL and Mx GTPases. These proteins inhibit viral replication in host cells. Type I IFNs, in turn, lead to antiviral state at early phase of viral infection. We provide an overview of the knowledge of IFN-inducible antiviral proteins conserved in vertebrates.

  • PDF

Post HCV Infection Due to MX Gene Stimulation Produced Post Treatment with Imported and Locally Produced Egyptian Biosimilar IFN

  • Mohamed, Shereen H;Mahmoud, Nora F;Mohamed, Aly F;Kotb, Nahla S
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.14
    • /
    • pp.5635-5641
    • /
    • 2015
  • Background: Cirrhosis is regarded as a possible end stage of many liver diseases, including viral infection. It occurs when healthy liver tissue becomes damaged and is replaced by scar tissue and finally may lead to hepatocellular carcinoma. Interferons (IFNs)are two general categories, type I and II. Type I includes one beta interferon and over 20 different alpha interferons. Alpha interferons are very similar in how they work, interacting with other proteins on cells like receptors. The main objective of this study was to compare Mx gene productivity post different cell line treatment with imported and Egyptian biosimilar locally produced IFNs, as well as the efficacy of those tested IFNs. Also, an assessment was made of sensitivity of different cell lines as alternatives to that recommended for evaluation of antiviral activity. Materials and Methods: Different cell lines (Vero, MDBK and Wish) were employed to evaluate cytotoxicity using the MTT assay. Antiviral activity was evaluated compared with standard IFN against VSV, Indiana strain -156, on tested rh-IFNs (imported; innovated and Egyptian biosimilar locally produced IFNs) in the pre-treated cell lines previously mentioned. The virus was propagated in the Wish cell line as recommended. Finally we estimated up-regulation of the Mx gene as a biomarker. Results: Data recorded revealed that test IFNs were safe in test cell lines. Viability was around 100%. Locally tested interferon did not realize the international potency limits, while the imported one was accepted compared with the standard IFN. These results were the same either using infectivity titer reduction assay or crystal violet staining of residual non- infected cells. Mx protein production was cell type related and confirmed by the detected Mx gene expressed in imported and locally produced IFN pre-treated cell lines. The expression of the gene was arranged in the order of Vero> wish > MDBK for the imported IFN, while for the Egyptian biosimillar locally produced one it was MDBK> Vero> wish. With regard to the antiviral activity there was a significant difference of imported IFN potency compared with the locally produced IFN (P<0.05), the IFN potential (antiviral activity) was not cell line related and showed non-significant difference for each separate product. Conclusions: Vero cells can be used as an alternative cell line for evaluation of IFN potency in case of unavailable USP recommended cell lines. Alternative potency evaluation assay could be used and proved significant difference in IFN potency in case of local and imported agents. Evaluation of antiviral activity could be used in parallel to viral infectivity reduction assay for better accuracy. Mx gene can be used as a marker for IFN potential.

STABILITY OF A QUADRATIC FUNCTIONAL EQUATION IN INTUITIONISTIC FUZZY NORMED SPACES

  • Bae, Jae-Hyeong;Park, Won-Gil
    • Communications of the Korean Mathematical Society
    • /
    • v.26 no.2
    • /
    • pp.237-251
    • /
    • 2011
  • In this paper, we determine some stability results concerning the 2-dimensional vector variable quadratic functional equation f(x+y, z+w) + f(x-y, z-w) = 2f(x, z) + 2f(y, w) in intuitionistic fuzzy normed spaces (IFNS). We dene the intuitionistic fuzzy continuity of the 2-dimensional vector variable quadratic mappings and prove that the existence of a solution for any approximately 2-dimensional vector variable quadratic mapping implies the completeness of IFNS.

Hepatitis E Virus Methyltransferase Inhibits Type I Interferon Induction by Targeting RIG-I

  • Kang, Sangmin;Choi, Changsun;Choi, Insoo;Han, Kwi-Nam;Roh, Seong Woon;Choi, Jongsun;Kwon, Joseph;Park, Mi-Kyung;Kim, Seong-Jun;Myoung, Jinjong
    • Journal of Microbiology and Biotechnology
    • /
    • v.28 no.9
    • /
    • pp.1554-1562
    • /
    • 2018
  • The type I interferons (IFNs) play a vital role in activation of innate immunity in response to viral infection. Accordingly, viruses have evolved to employ various survival strategies to evade innate immune responses induced by type I IFNs. For example, hepatitis E virus (HEV) encoded papain-like cysteine protease (PCP) has been shown to inhibit IFN activation signaling by suppressing K63-linked de-ubiquitination of retinoic acid-inducible gene I (RIG-I) and TANK-binding kinase 1 (TBK1), thus effectively inhibiting down-stream activation of IFN signaling. In the present study, we demonstrated that HEV inhibits polyinosinic-polycytidylic acid (poly(I:C))-induced $IFN-{\beta}$ transcriptional induction. Moreover, by using reporter assay with individual HEV-encoded gene, we showed that HEV methyltransferase (MeT), a non-structural protein, significantly decreases RIG-I-induced $IFN-{\beta}$ induction and $NF-{\kappa}B$ signaling activities in a dose-dependent manner. Taken together, we report here that MeT, along with PCP, is responsible for the inhibition of RIG-I-induced activation of type I IFNs, expanding the list of HEV-encoded antagonists of the host innate immunity.

Flavonoid Luteolin Inhibits LPS-induced Type I Interferon in Primary Macrophages (플라보노이드 루테올린의 lippopolysacharide로 유도한 type 1 interferon 억제 효과)

  • Jung, Won-Seok;Bae, Gi-Sang;Cho, Chang-Re;Park, Kyoung-Chel;Koo, Bon-Soon;Kim, Min-Sun;Ham, Kyung-Wan;Jo, Beom-Yeon;Cho, Gil-Hwan;Seo, Sang-Wan;Lee, Si-Woo;Song, Ho-Joon;Park, Sung-Joo
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.23 no.5
    • /
    • pp.986-992
    • /
    • 2009
  • Type I interferons (IFNs) are critical mediators of the innate immune system to defend viral infection. Interferon regulatory factor (IRF) and signal transducer and activator of transcription (STAT) play critical roles in type I IFN production in response to viral infection. Luteolin is natural polyphenolic compounds that have anti-inflammatory, cytoprotective and anti-carcinogenic effects. However, the mechanism of action and impact of luteolin on innate immunity is still unknown. In this study, we examined the effects of luteolin on the lipopolysacchride (LPS)-induced inflammatory responses. Luteolin inhibited Type I IFNs expression of mRNA and increased interleukin(IL)-10 expression of mRNA. Next, we examined the protective effects of IL-10 using IL-10 neutralizing antibody (IL-10NA). Blockade of IL-10 action didn't cause a significant reduction of Type I IFNs than LPS-induced luteolin pretreatment. Pretreatment of luteolin inhibited the level of IRF-1, and IRF-7 mRNA and the nuclear translocation of IRF-3. Also, luteolin reduced the activation of STAT - 1, 3. Theses results suggest that luteolin inhibits LPS-induced the production of Type I IFNS by both IRFs and STATs not IL-10 and may be a beneficial drug for the treatment of inflammatory disease.

Regulation of Interferon-stimulated Gene (ISG)12, ISG15, and MX1 and MX2 by Conceptus Interferons (IFNTs) in Bovine Uterine Epithelial Cells

  • Kim, Min-Su;Min, Kwan-Sik;Imakawa, Kazuhiko
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.26 no.6
    • /
    • pp.795-803
    • /
    • 2013
  • Various endometrial genes in ruminant ungulates are regulated by conceptus interferon tau (IFNT). However, the effect of each IFNT isoform has not been carefully evaluated. In this study, the effects of 2 IFNT isoforms, paralogs found in utero, and interferon alpha (IFNA) on uterine epithelial and Mardin-Darby bovine kidney (MDBK) cells were evaluated. Expression vectors of the bovine interferon (bIFNT) genes bIFNT1, bIFNTc1, and bIFNA were constructed, and recombinant bIFNs (rbIFNs) were produced by 293 cells. Bovine uterine epithelial or MDBK cells were cultured in the presence or absence of increasing concentrations of each rbIFN for 24, 48, or 72 h. Transcript levels of the IFN-stimulated genes (ISGs) ISG12, ISG15, MX1, and MX2 were analyzed using quantitative reverse transcription-polymerase chain reaction. These messenger RNAs were up-regulated by rbIFN in a time- and concentration-dependent manner. In the epithelial cells, the ISG12 transcript level increased at 48 h after rbIFN treatment but slightly decreased at 72 h, whereas the transcript level of ISG15 increased at 24 h and was maintained through 72 h. Expressions of MX1 and MX2 increased at 72 h after rbIFN treatment. MX1 expression increased in all treatment groups, but MX2 increased only by bIFNTc1. In MDBK cells, the expression of ISG12 was increased by bIFNT1 and bIFNTc1 after 24 and 72 h; however, it was unchanged by rbIFNA. ISG15 increased following the same pattern as that seen in uterine epithelial cells, and MX1 showed a similar expression pattern. MX2 expression was increased by bIFNTc1 treatment in uterine epithelial cells, and its expression was increased by both bIFNT1 and bIFNTc1 in MDBK cells. These results show that epithelial and MDBK cell responses to IFNs differ, suggesting that IFNs possess common functions, but may have acquired different functions following gene duplication.

Glycogen synthase kinase 3β in Toll-like receptor signaling

  • Ko, Ryeojin;Lee, Soo Young
    • BMB Reports
    • /
    • v.49 no.6
    • /
    • pp.305-310
    • /
    • 2016
  • Toll-like receptors (TLRs) play a critical role in the innate immune response against pathogens. Each TLR recognizes specific pathogen-associated molecular patterns, after which they activate the adaptor protein MyD88 or TRIF-assembled signaling complex to produce immune mediators, including inflammatory cytokines and type I IFNs. Although the activation of TLR is important for host defense, its uncontrolled activation can damage the host. During the past decade, numerous studies have demonstrated that GSK3β is a key regulator of inflammatory cytokine production in MyD88-mediated TLR signaling via TLR2 and TLR4. Recently, GSK3β has also been implicated in the TRIF-dependent signaling pathway via TLR3. In this review, we describe current advances on the regulatory role of GSK3β in immune responses associated with various TLRs. A better understanding of the role of GSK3β in TLR signaling might lead to more effective anti-inflammatory interventions.

ANTAGONISTIC EFFECTS OF INTERFERONS (INFs) AND SODIUM ORTHOVANADATE ON RESPONSES PRODUCED BY TCDD IN SEVERAL CULTURE SYSTEMS

  • Kim, Hwan-Mook
    • Toxicological Research
    • /
    • v.7 no.2
    • /
    • pp.239-255
    • /
    • 1991
  • Several types of IFNs were tested for their ability to suppress TCDD-inducible P-450 dependent mixed function oxidase (MFO) system in mouse primary hepatocytes. Mouse IFN-gamma (IFN-G) markedly suppressed EROD activity when added at the same time as TCDD (10 nM). The antagonism of EROD activity by IFN-G exhibited both a dose-(10-100 U/ml) and time-depedence. In contrast, mouse IFN-A/B was only moderately suppressive and only at high concentrations (500 U/ml). Rat IFN-G was even more selective than mouse, wherase human IFN-G had no activity.

  • PDF

The Dose Dependent Effects of Ruxolitinib on the Invasion and Tumorigenesis in Gliomas Cells via Inhibition of Interferon Gamma-Depended JAK/STAT Signaling Pathway

  • Delen, Emre;Doganlar, Oguzhan
    • Journal of Korean Neurosurgical Society
    • /
    • v.63 no.4
    • /
    • pp.444-454
    • /
    • 2020
  • Objective : Glioblastoma multiforme (GBM) is the most aggressive for of brain tumor and treatment often fails due to the invasion of tumor cells into neighboring healthy brain tissues. Activation of the Janus kinase-signal transducer and activator of transcription (JAK/STAT) signaling pathway is essential for normal cellular function including angiogenesis, and has been proposed to have a pivotal role in glioma invasion. This study aimed to determine the dose-dependent effects of ruxolitinib, an inhibitor of JAK, on the interferon (IFN)-I/IFN-α/IFN-β receptor/STAT and IFN-γ/IFN-γ receptor/STAT1 axes of the IFN-receptor-dependent JAK/STAT signaling pathway in glioblastoma invasion and tumorigenesis in U87 glioblastoma tumor spheroids. Methods : We administered three different doses of ruxolitinib (50, 100, and 200 nM) to human U87 glioblastoma spheroids and analyzed the gene expression profiles of IFNs receptors from the JAK/STAT pathway. To evaluate activation of this pathway, we quantified the phosphorylation of JAK and STAT proteins using Western blotting. Results : Quantitative real-time polymerase chain reaction analysis demonstrated that ruxolitinib led to upregulated of the IFN-α and IFN-γ while no change on the hypoxia-inducible factor-1α and vascular endothelial growth factor expression levels. Additionally, we showed that ruxolitinib inhibited phosphorylation of JAK/STAT proteins. The inhibition of IFNs dependent JAK/STAT signaling by ruxolitinib leads to decreases of the U87 cells invasiveness and tumorigenesis. We demonstrate that ruxolitinib may inhibit glioma invasion and tumorigenesis through inhibition of the IFN-induced JAK/STAT signaling pathway. Conclusion : Collectively, our results revealed that ruxolitinib may have therapeutic potential in glioblastomas, possibly by JAK/STAT signaling triggered by IFN-α and IFN-γ.

Human Cytomegalovirus Inhibition of Interferon Signal Transduction

  • Daniel M. Miller
    • Korean Journal of Microbiology
    • /
    • v.38 no.4
    • /
    • pp.203-203
    • /
    • 2002
  • Cytomegalovirus (CMV), a beta-herpesvirus with worldwide distribution, exhibits host persistence, a distinguishing characteristic of all herpesviruses. This persistence is dependent upon restricted gene expression in infected cells as well as the ability of productively infected cells to escape from normal cell-mediated anti-viral immunosurveillance. Type I (IFN-α/β) and type II (IFN-γ) interferons are major components of the innate defense system against viral infection. They are potent inducers of MHC class I and II antigens and of antigen processing proteins. Additionally, IFNS mediate direct antiviral effects through induction effector molecules that block viral infection and replications such as 2′, 5-oligoadenylate synthetase (2, 5-OAS). IFNS function through activation of well-defined signal transduction pathways that involve phosphorylation of constituent proteins and ultimate formation of active transcription factors. Recent studies have shown that a number of diverse viruses, including CMV, EBV, HPV mumps and Ebola, are capable of inhibiting IFN-mediated signal transduction through a variety of mechanisms. As an example, CMV infection inhibits the ability of infected cells Is transcribe HLA class I and II antigens as well as the antiviral effector molecules 2, 5-OAS and MxA I. EMSA studies have shown that IFN-α and IFN-γ are unable to induce complete signal transduction in the presence of CMV infection, phenomena that are associated with specific decreases in JAKl and p48. Viral inhibition of IFN signal transduction represents a new mechanistic paradigm for increased viral survival, a paradigm predicting widespread consequences in the case of signal transduction factors common to multiple cytokine pathways.