DOI QR코드

DOI QR Code

STABILITY OF A QUADRATIC FUNCTIONAL EQUATION IN INTUITIONISTIC FUZZY NORMED SPACES

  • Bae, Jae-Hyeong (Graduate School of Education Kyung Hee University) ;
  • Park, Won-Gil (Department of Mathematics Education College of Education Mokwon University)
  • Received : 2010.01.23
  • Published : 2011.04.30

Abstract

In this paper, we determine some stability results concerning the 2-dimensional vector variable quadratic functional equation f(x+y, z+w) + f(x-y, z-w) = 2f(x, z) + 2f(y, w) in intuitionistic fuzzy normed spaces (IFNS). We dene the intuitionistic fuzzy continuity of the 2-dimensional vector variable quadratic mappings and prove that the existence of a solution for any approximately 2-dimensional vector variable quadratic mapping implies the completeness of IFNS.

Keywords

References

  1. T. Aoki, On the stability of the linear transformation in Banach spaces, J. Math. Soc. Japan 2 (1950), 64-66. https://doi.org/10.2969/jmsj/00210064
  2. J.-H. Bae and W.-G. Park, A functional equation originating from quadratic forms, J. Math. Anal. Appl. 326 (2007), no. 2, 1142-1148. https://doi.org/10.1016/j.jmaa.2006.03.023
  3. T. Bag and S. K. Samanta, Finite dimensional fuzzy normed linear spaces, J. Fuzzy Math. 11 (2003), no. 3, 687-705.
  4. V. Balopoulos, A. G. Hatzimichailidis, and B. K. Papadopoulos, Distance and similarity measures for fuzzy operators, Inform. Sci. 177 (2007), no. 11, 2336-2348. https://doi.org/10.1016/j.ins.2007.01.005
  5. L. C. Barros, R. C. Bassanezi, and P. A. Onelli, Fuzzy modelling in population dynamics, Ecol. Model 128 (2000), 27-33. https://doi.org/10.1016/S0304-3800(99)00223-9
  6. R. Biswas, Fuzzy inner product spaces and fuzzy norm functions, Inform. Sci. 53 (1991), 185-190. https://doi.org/10.1016/0020-0255(91)90063-Z
  7. S. S. Chang, J. M. Rassias, and R. Saadati, Stability of a cubic functional equation in intuitionistic random normed spaces, Appl. Math. Mech. (English Ed.) 31 (2010), no. 1, 21-26. https://doi.org/10.1007/s10483-010-0103-6
  8. C. Felbin, Finite-dimensional fuzzy normed linear space, Fuzzy Sets and Systems 48 (1992), no. 2, 239-248. https://doi.org/10.1016/0165-0114(92)90338-5
  9. G. Feng and G. Chen, Adaptive control of discrete-time chaotic systems: a fuzzy control approach, Chaos Solitons Fractals 23 (2005), no. 2, 459-467. https://doi.org/10.1016/j.chaos.2004.04.013
  10. A. L. Fradkov and R. J. Evans, Control of chaos: methods and applications in engineering, Chaos, Solitons and Fractals 29 (2005), 33-56.
  11. R. Giles, A computer program for fuzzy reasoning, Fuzzy Sets and Systems 4 (1980), no. 3, 221-234. https://doi.org/10.1016/0165-0114(80)90012-3
  12. L. Hong and J. Q. Sun, Bifurcations of fuzzy nonlinear dynamical systems, Commun. Nonlinear Sci. Numer. Simul. 11 (2006), no. 1, 1-12. https://doi.org/10.1016/j.cnsns.2004.11.001
  13. D. H. Hyers, On the stability of the linear functional equation, Proc. Nat. Acad. Sci. U.S.A. 27 (1941), 222-224. https://doi.org/10.1073/pnas.27.4.222
  14. D. H. Hyers, G. Isac, and T. M. Rassias, Stability of Functional Equations in Several Variables, Birkhauser, 1998.
  15. A. K. Katsaras, Fuzzy topological vector spaces. II, Fuzzy Sets and Systems 12 (1984), no. 2, 143-154. https://doi.org/10.1016/0165-0114(84)90034-4
  16. S. V. Krishna and K. K. M. Sarma, Separation of fuzzy normed linear spaces, Fuzzy Sets and Systems 63 (1994), no. 2, 207-217. https://doi.org/10.1016/0165-0114(94)90351-4
  17. A. K. Mirmostafaee, M. Mirzavaziri, and M. S. Moslehian, Fuzzy stability of the Jensen functional equation, Fuzzy Sets and Systems 159 (2008), no. 6, 730-738. https://doi.org/10.1016/j.fss.2007.07.011
  18. A. K. Mirmostafaee and M. S. Moslehian, Fuzzy versions of Hyers-Ulam-Rassias theorem, Fuzzy Sets and Systems 159 (2008), no. 6, 720-729. https://doi.org/10.1016/j.fss.2007.09.016
  19. A. K. Mirmostafaee and M. S. Moslehian, Fuzzy almost quadratic functions, Results Math. doi:10.1007/s00025-007-0278-9.
  20. M. Mursaleen and S. A. Mohiuddine, Statistical convergence of double sequences in intuitionistic fuzzy normed spaces, Chaos Solitons Fractals 41 (2009), no. 5, 2414-2421. https://doi.org/10.1016/j.chaos.2008.09.018
  21. M. Mursaleen and S. A. Mohiuddine, Nonlinear operators between intuitionistic fuzzy normed spaces and Frechet derivative, Chaos Solitons Fractals 42 (2009), no. 2, 1010-1015. https://doi.org/10.1016/j.chaos.2009.02.041
  22. M. Mursaleen and S. A. Mohiuddine, On stability of a cubic functional equation in intuitionistic fuzzy normed spaces, Chaos Solitons Fractals 42 (2009), no. 5, 2997-3005. https://doi.org/10.1016/j.chaos.2009.04.041
  23. J. H. Park, Intuitionistic fuzzy metric spaces, Chaos Solitons Fractals 22 (2004), no. 5, 1039-1046. https://doi.org/10.1016/j.chaos.2004.02.051
  24. Th. M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc. 72 (1978), no. 2, 297-300. https://doi.org/10.1090/S0002-9939-1978-0507327-1
  25. Th. M. Rassias, On the stability of functional equations and a problem of Ulam, Acta Appl. Math. 62 (2000), no. 1, 23-130. https://doi.org/10.1023/A:1006499223572
  26. R. Saadati, A note on "Some results on the IF-normed spaces", Chaos Solitons Fractals 41 (2009), no. 1, 206-213. https://doi.org/10.1016/j.chaos.2007.11.027
  27. R. Saadati and J. H. Park, On the intuitionistic fuzzy topological spaces, Chaos Solitons Fractals 27 (2006), no. 2, 331-344. https://doi.org/10.1016/j.chaos.2005.03.019
  28. B. Schweizer and A. Sklar, Statistical metric spaces, Pacific J. Math. 10 (1960), 313-334. https://doi.org/10.2140/pjm.1960.10.313
  29. S. Shakeri, Intuitionistic fuzzy stability of Jensen type mapping, J. Nonlinear Sci. Appl. 2 (2009), no. 2, 105-112.
  30. S. Shakeri, Y. J. Cho, and R. Saadati, Generalized random stability of Jensen type mapping, Scientia Magna 5 (2009), no. 3, 20-25.
  31. B. Shieh, Infinite fuzzy relation equations with continuous t-norms, Inform. Sci. 178 (2008), no. 8, 1961-1967. https://doi.org/10.1016/j.ins.2007.12.006
  32. S. M. Ulam, Problems in modern mathematics, Science ed. New York: John Wiley & Sons; 1940 [chapter VI, Some questions in analysis: Section 1, Stability].
  33. J.-Z. Xiao and X.-H. Zhu, Fuzzy normed space of operators and its completeness, Fuzzy Sets and Systems 133 (2003), no. 3, 389-399. https://doi.org/10.1016/S0165-0114(02)00274-9