• Title/Summary/Keyword: I-potent

Search Result 701, Processing Time 0.026 seconds

Antimicrobial Agent from Schima wallichii ssp. liukiuensis against Candida spp. (Schima wallichii ssp. Liukiuensis 추출물 Sterol Glycoside의 Candida spp.에 대한 항균활성)

  • Shin, Kuem;Min, Ji-Yun;Kang, Seung-Mi;Park, Dong-Jin;Song, Hyun-Jin;Kwon, Oh-Woong;Yang, Jae-Kyung;Karigar, Chandrakant S.;Choi, Myung-Suk
    • Korean Journal of Medicinal Crop Science
    • /
    • v.17 no.1
    • /
    • pp.61-67
    • /
    • 2009
  • This study carried out development of a natural antimicrobial agent from Schima wallichii ssp. liukiuensis. Compound I exhibiting potent antimicrobial activity against Candida spp. was isolated from the methanol extracts of Schima wallichii ssp. liukiuensis. The structure of I identified as a sterol glycoside consisted of a trisaccharide and ${\alpha}_1$-sitosterol. Trisaccharide composed of L-rhamnose, D-galactose and D-glucose residues. The antimicrobial activity of I was selective on yeast rather than bacteria or other fungi. Compound I was demonstrated to be ineffective against toxicity to mouse liver cells where as protective to human dermal fibroblast cells at low concentrations. Thus, it is reasonable to expect a sterol glycoside (I) as a valuable alternative for synthetic antifungal.

Angiotensin- I Converting Enzyme Inhibitory Properties of Bovine Casein Hydrolysates in Different Enzymatic hydrolysis Conditions (효소가수분해 조건에 따른 우유 케이신의 Angiotensin-I 전환효소 저해효과)

  • 김현수;인영민;정석근;함준상;강국희;이수원
    • Food Science of Animal Resources
    • /
    • v.22 no.1
    • /
    • pp.87-93
    • /
    • 2002
  • Angiotensiri-I converting enzyme(ACE) catalyst the removal of the C-terminal dipeptide from the angiotensin-I to give the angiotensin-II, a potent peptide that causes constriction of regulation of blood pressure. Recently, ACE inhibitor peptides have been isolated from enzymatic digests of food protein. The aim of this study was to identify bovine casein hydrolysates with ACE inhibitory properties in different enzymatic hydrolysis conditions. The casein were hydrolyzed neutrase, alcalase, protamax, flavourzyme, premed 192, sumizyme MP, sumizyme LP and pescalase alone and with an enzyme combination. Premed 192 produced ACE inhibitory peptides most efficiently. In order to ACE inhibitory peptide produced enzymatic hydrolysis condition were premed 192 added to casein ratio of 1:100(w/w), and incubated at 47$\^{C}$ for 12hrs. Casein hydrolysate gave 50% inhibition(IC$\_$50/ value) of ACE activity at concentration with 248ug/ml(general method) and 265ug/ml(pretreatment method) respectively.

A Curcuminoid and Two Sesquiterpenoids from Curcuma zedoaria as Inhibitors of Nitric Oxide Synthesis in Activated Macrophages

  • Jang, Mi-Kyung;Lee, Hwa-Jin;Kim, Ji-Sun;Ryu , Jae-Ha
    • Archives of Pharmacal Research
    • /
    • v.27 no.12
    • /
    • pp.1220-1225
    • /
    • 2004
  • The overproduction of nitric oxide (NO) by inducible nitric oxide synthase (iNOS) is known to be responsible for vasodilation and hypotension observed in septic shock and inflammation. Inhibitors of iNOS, thus, may be useful candidates for the treatment of inflammatory diseases accompanied by overproduction of NO. In the course of screening oriental anti-inflammatory herbs for the inhibitory activity of NO synthesis, a crude methanolic extract of Curcuma zedoaria exhibited significant activity. The activity-guided fractionation and repetitive chromatographic procedures with the EtOAc soluble fraction allowed us to isolate three active compounds. They were identified as 1,7-bis (4-hydroxyphenyl)-1,4,6-heptatrien-3-one (1), procurcumenol (2) and epiprocurcumenol (3) by spectral data analyses. Their concentrations for the 50% inhibition of NO production $(IC_{50})$ in lipopolysaccharide (LPS)-activated macrophages were 8, 75, 77 ${\mu}M$, respectively. Compound 1 showed the most potent inhibitory activity for NO production in LPS-activated macrophages, while the epimeric isomers, compound 2 and 3 showed weak and similar potency. Inhibition of NO synthesis by compound 1 was very weak when activated macrophages were treated with 1 after iNOS induction. In the immunoblot analysis, compound 1 suppressed the expression of iNOS in a dose-dependent manner. In summary, 1,7-bis (4-hydroxyphenyl)-1,4,6-heptatrien-3-one from Curcuma zedoaria inhibited NO production in LPS-activated macrophages through suppression of iNOS expression. These results imply that the traditional use of C. zedoaria rhizome as anti-inflammatory drug may be explained at least in part, by inhibition of NO production.

Inhibitory Effect of Eurya emarginata on the Production of Pro-inflammatory Cytokines in Murine Macrophage RAW264.7 (Murine Macrophage RAW 264.7 세포에서 우묵사스레피에 의한 염증성 사이토카인 억제효과)

  • 박수영;이혜자;현은아;문지영;앙홍철;이남호;김세재;강희경;유은숙
    • YAKHAK HOEJI
    • /
    • v.47 no.5
    • /
    • pp.311-318
    • /
    • 2003
  • Eurya emarginata (Thunb.) Makino (Theaceae) is distributed in coastal areas of island. The leaves of Eurya are used in the traditional medicine of the coastal areas of jeju island with the aim of diuresis or to treat ulcers. Nevertheless, there are few reports on the biological activity and constituents of E. emarginata. In this study, we investigated the pharmacological activity of the solvent extracts of E. emarginata on the several inflammatory markers (TNF-$\alpha$, IL-1$\beta$, IL-6, NO, iNOS and COX-2). Also we examined the antioxidizing effect of the solvent extracts by determination of DPPH radical-scavenging activity. Among the solvent fractions, EtOAc and BuOH extracts showed potent radical scavenging activity (RC$_{50}$=10.9 and 12.7 respectively). The subtractions of EF 5-4-6-3-2 and BF 1 potentially inhibited the mRNA expression of pro-inflammatory cytokines (IL-1$\beta$, IL-6 and TNF-$\alpha$) at the concentration of 100 $\mu\textrm{g}$/mι. Also the fractions inhibited the mRNA expression of pro-inflammatory cytokines (IL-1$\beta$, IL-6 and TNF-$\alpha$) and protein expression of iNOS and COX-2 at the concentration of 100 $\mu\textrm{g}$/mι. And then, the inhibition of iNOS was correlated with the decrease of nitrite level. These results suggest that E. emarginata may have anti-inflammatory activity through the inhibition of pro-inflammatory cytokines, iNOS and COX-2.2.

Evaluation of Commercial Disinfectants for Efficacy at Inactivating Enterobacter sakazakii (Cronobacter spp.) in Water: A Preliminary Study

  • Chon, Jung-Whan;Seo, Kun-Ho;Kim, Binn;Her, Jekang;Jeong, Dongkwan;Song, Kwang-Young
    • Journal of Dairy Science and Biotechnology
    • /
    • v.39 no.3
    • /
    • pp.104-112
    • /
    • 2021
  • This study was conducted to evaluate the efficacy of commercial disinfectants at inactivating Enterobacter sakazakii (Cronobacter spp.) in water. Disinfectant I contained 6.15% sodium hypochlorite, and disinfectant II contained both 2.25% n-alkyl dimethylbenzyl ammonium chloride and 2.25% n-alkyl ethylbenzyl ammonium chloride. Disinfectant I was added to distilled water to obtain a range of residual chloride concentrations at 50 ppm intervals with a maximum of 1-1,000 ppm. Disinfectant II was prepared at concentrations ranging from 1-200 ppm with 5 ppm intervals. Exposure time for all solutions was 10 min. In total, 58 E. sakazakii (Cronobacter spp.) strains were tested in this study. Nine isolates were obtained from clinical samples, and 49 isolates were obtained from environmental samples. Seven strains (6 clinical and 1 environmental) were able to survive in 100 ppm disinfectant I, and a maximum of 5 ppm of disinfectant II. Fifty one strains (3 clinical and 48 environmental) were not killed in 10 ppm of disinfectant I and 1 ppm of disinfectant II in water. In conclusion, this study demonstrated that clinical E. sakazakii (Cronobacter spp.) strains displayed 5- to 10-fold higher resistance to disinfectants than environmental E. sakazakii (Cronobacter spp.) strains. Disinfectant II, containing quaternary ammonium compounds, was shown to be more potent in inactivating E. sakazakii (Cronobacter spp.) in water used to clean infant formula manufacturing equipment than disinfectant I.

Diesel Exhaust Particles and Airway Inflammation: Effect of Nitric Oxide Synthase Inhibitors

  • Lim, Heung-Bin;Lee, Dong-Wook
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.18 no.E2
    • /
    • pp.121-128
    • /
    • 2002
  • This study was carried out to investigate if nitric oxide synthase (NOS) inhibitors modulate airway inflammation induced by diesel exhaust particles (DEP). N$\^$G/-nitro-L-arginine methyl ester (L-NAME), a potent constitutive NOS (cNOS) inhibitor, and aminoguanidine (AG), a selective inducible NOS (iNOS) inhibitor, were administered to mice in their drinking water for 7 weeks. Airway inflammation was elicited by the repeated intratracheal administration of DEP. The results showed that macrophages, inflammatory eosinophils and neutrophils in bronchoalveolar lavage (BAL) fluids by intratracheal DEP instillation were significantly suppressed in the mice treated with two NOS inhibitors toghther with DEP. The suppression of these cells was more effective in AG treated groups than in L -NAME treated groups. NOS inhibitor treatment also reduced interleukin -5 (IL-5 in the BAL fluids and lung homogenates. Additionally, it was found that eosinophil peroxidase (EPO) activity in the BAL fluids was also decreased by NOS inhibitor treatment. These results suggest that nitric oxide (NO) is produced in airway inflammation by repeated DEP instillation, and that iNOS inhibition as well as cNOS inhibition can play a modulating role in this airway inflammation by DEP.

Attenuating Development of Cardiovascular Hypertrophy with Hydrolysate of Chicken Leg Bone Protein in Spontaneously Hypertensive Rats

  • Cheng, Fu-Yuan;Wan, Tien-Chun;Liu, Yu-Tse;Lai, Kung-Ming;Lin, Liang-Chuan;Sakata, Ryoichi
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.21 no.5
    • /
    • pp.732-737
    • /
    • 2008
  • This study developed a natural ingredient as a functional food possessing properties of attenuation of hypertension and cardiovascular hypertrophy. In a previous study hydrolysates obtained from chicken leg bone protein using Alcalase strongly inhibited angiotensin I converting enzyme (ACE) in vitro. In particular, hydrolysate (A4H) from four hours of incubation exhibited the highest ACE inhibitory activity (IC50 = 0.545 mg/ml). A4H was selected as a potent ACE inhibitor and orally administrated to spontaneously hypertensive rats (SHR) for eight weeks to investigate attenuating effects on age-related development of hypertension and cardiovascular hypertrophy. Results showed that treatment with A4H of SHRs attenuated the development of hypertension as effectively as the clinical antihypertensive drug captopril. Moreover, a significantly lower heart to body weight ratio and thinness of coronary arterial wall was observed in SHRs that had been treated with A4H or captopril. The results suggest that A4H can be utilized in developing an ACE inhibitor as a potential ingredient of functional foods to alleviate hypertension and cardiovascular hypertrophy.

Importance of Imidazolidinone Motif in 4-Phenyl-N-arylsulfonylimidazolidinone for their Anticancer Activity

  • Sharma, Vinay K.;Lee, Ki-Cheul;Joo, Cheon-Ik;Sharma, Niti;Jung, Sang-Hun
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.spc8
    • /
    • pp.3009-3016
    • /
    • 2011
  • To investigate the possible isosteric replacement of imidazolidinone moiety in 4-phenyl-N-arylsulfonylimidazolidinone for broad and potent anticancer agents, a series of 4-phenyl-l(N)-arylsulfonylimidazolidinones 6a-k, imidazolidinethione analogs 7a-i, and imidazolidine oxime analogs 8a-c were prepared and evaluated for their in vitro anticancer activity against four human cancer cell lines (human lung A549, human colon COLO205, human leukemia K562, human ovary SK-OV-3). Among all the derivatives of N-arylsulfonylimidazolidinone 6a-k, compounds 6f and 6g showed the best inhibition comparable to doxorubicin against all cancer cell lines. Increasing the carbon chain on alkyl moieties of carbamates as shown in 6c-g did not alter the activity. The imidazolidinethione analogs 7a-i and imidazolidin-2-one oxime derivatives 8a-c did not possess any good activity. Therefore, imidazolidinone moiety is the best pharmacophore among the 4-phenyl-Narylsulfonylimidazolidinone derivatives.

Viral Inhibition of PRR-Mediated Innate Immune Response: Learning from KSHV Evasion Strategies

  • Lee, Hye-Ra;Choi, Un Yung;Hwang, Sung-Woo;Kim, Stephanie;Jung, Jae U.
    • Molecules and Cells
    • /
    • v.39 no.11
    • /
    • pp.777-782
    • /
    • 2016
  • The innate immune system has evolved to detect and destroy invading pathogens before they can establish systemic infection. To successfully eradicate pathogens, including viruses, host innate immunity is activated through diverse pattern recognition receptors (PRRs) which detect conserved viral signatures and trigger the production of type I interferon (IFN) and pro-inflammatory cytokines to mediate viral clearance. Viral persistence requires that viruses co-opt cellular pathways and activities for their benefit. In particular, due to the potent antiviral activities of IFN and cytokines, viruses have developed various strategies to meticulously modulate intracellular innate immune sensing mechanisms to facilitate efficient viral replication and persistence. In this review, we highlight recent advances in the study of viral immune evasion strategies with a specific focus on how Kaposi's sarcoma-associated herpesvirus (KSHV) effectively targets host PRR signaling pathways.

Bioactive Metabolites Produced by Pseudonocardia endophytica VUK-10 from Mangrove Sediments: Isolation, Chemical Structure Determination and Bioactivity

  • Mangamuri, Usha Kiranmayi;Vijayalakshmi, Muvva;Poda, Sudhakar;Manavathi, Bramanandam;Bhujangarao, Ch.;Venkateswarlu, Y.
    • Journal of Microbiology and Biotechnology
    • /
    • v.25 no.5
    • /
    • pp.629-636
    • /
    • 2015
  • Chemical investigation of the actinobacterial isolate Pseudonocardia endophytica VUK-10 has led to the segregation of two known bioactive compounds, namely 4-(2-acetamidoethyl) phenyl acetate and 4-((1, 4-dioxooctahydropyrrolo [1, 2-a] pyrazin-3-yl) methyl) phenyl acetate. The strain was isolated from a sediment sample of the Nizampatnam mangrove ecosystem, south coastal Andhra Pradesh, India. The chemical structure of the active compounds was established on the basis of spectroscopic analysis, including 1H NMR and 13C NMR spectroscopies, FTIR, and EIMS. The antimicrobial and cytotoxic activities of the bioactive compounds produced by the strain were tested against opportunistic and pathogenic bacteria and fungi and on MDA-MB-231, OAW, HeLa, and MCF-7 cell lines. The compounds exhibited antimicrobial activities against gram-positive and gram-negative bacteria and fungi and also showed potent cytotoxic activity against MDA-MB-231, OAW, HeLa, and MCF-7 cell lines. This is the first example for this class of bioactive compounds isolated from Pseudonocardia of mangrove origin.