• Title/Summary/Keyword: I-SSR marker analysis

Search Result 27, Processing Time 0.022 seconds

Diversity and Geographical Relationships by SSR Marker in Subgenus Soja Originated from Korea (SSR 마커에 의한 한국 원산 Soja 아속의 다양성과 지리적 유연관계)

  • Cho Yang-Hee;Yoon Mun-Sup;Lee Jeong-Ran;Baek Hyung-Jin;Kim Chang-Yung;Kim Tae-San;Cho Eun-Gi;Lee Hee-Bong
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.51 no.3
    • /
    • pp.239-247
    • /
    • 2006
  • This study was carried out to investigate polymorphism, gene diversity, and geographical relationships of 81 Korean wild (Glycine soja) and 130 cultivated soybeans (G. max) using seven simple sequence repeat (SSR) markers. A total of 144 alleles were observed in 211 accessions with an average of 20.6. Each SSR loci showed 13 (Satt532) to 41 (Sat_074) multialleles. The range of alleles within the loci was wider in wild soybean than the cultivated soybeans. The average genetic diversity values were 0.88 and 0.69 in wild and cultivated soybeans, respectively. In a scatter diagram of wild and cultivated soybeans based on canonical discriminant analysis, CAN1 accounted for 84.2% while CAN2 did 8.5%. Two species were grouped into three: group I (G. max), group II (G. soja), and group III (complex of G. max and G. soja). The geographical relationships of wild soybean were distinguished into two groups: Gyeonggi for Group I, and Gyeongsang, Jeolla, Gangwon, and Chungcheong for Group II. Those of cultivated soybeans were distinguished into Gyeonggi, Gangwon, and Gyeongsang for Group I, and Jeolla and Chungcheong for Group II. Therefore, the geographical relationships of wild soybeans were well typified based on the ecosystems of the Korean peninsula.

Genetic Diversity and Spatial Structure in Populations of Abelia tyaihyoni (줄댕강나무 (Abelia tyaihyoni) 집단의 유전다양성 및 공간구조)

  • Jeong, Ji-Hee;Kim, Kyu-Sick;Lee, Cheul-Ho;Kim, Zin-Suh
    • Journal of Korean Society of Forest Science
    • /
    • v.96 no.6
    • /
    • pp.667-675
    • /
    • 2007
  • The genetic diversity and the spatial structure in two populations of Abelia tyaihyoni in Yeongwol region were studied by employing I-SSR markers. In spite of the limited distribution and small population sizes of Abelia tyaihyoni, the amount of genetic diversity estimated at the individual level was comparable to other shrub species (S.I.=0.336, h=0.217). Genetic diversity at the genet level was very similar to that at individual level. (S.l.=0.339, h=0.219). About 18.7 percent of total variation was allocated between two populations, which was slightly higher or similar level as compared with other shrub species. Genotypic diversity estimated by the ratio of the number of genets ($N_G$) over the total number of individuals (N) and a modified Simpson's index ($D_G$) were also higher than those of other shrubs. The maximum diameter of a genet did not exceed 5.5 m. The high level of gene and genotypic diversity, and the relatively limited maximum diameter of a genet suggested that the clonal propagation is not the most dominant factor in determining the population structure of Abelia tyaihyoni. Spatial autocorrelation analysis revealed significant spatial genetic structure within 12 m and 18 m distances in two populations A and B, respectively. Autocorrelations among individuals at the both individual and genet levels in each population didn't show any considerable differences. As a sampling strategy for ex-situ conservation of populations showing continuous distribution, a minimum distance of 18 m between individuals was recommended. For the populations with many segments, it was considered very crucial to sample materials from as many segments as possible.

An Overview for Molecular Markers in Plants (식물에서 분자 마커의 동향)

  • Huh, Man Kyu
    • Journal of Life Science
    • /
    • v.25 no.7
    • /
    • pp.839-848
    • /
    • 2015
  • A molecular marker is a molecule contained within a sample taken from an organism or other matter. The development of molecular techniques for genetic analysis has led to a great contribution to our knowledge of plant genetics and our understanding of the structure and behavior of various genomes in plants. Recently, functional molecular markers have been developed to detect the presence of major genes from the analysis of pedigreed data in absence of molecular information. DNA markers have developed into many systems based on different polymorphism-detecting techniques or methods such as RFLP, AFLP, RAPD, SSR, SNP, etc. A new class of very useful DNA markers called genic molecular markers utilizing the ever-increasing archives of gene sequence information being accumulated under the EST sequencing projects on a large number of plant species. Functional markers are derived from polymorphic sequences, and are more likely to be involved in phenotypic trait variation. Based on this conceptual framework, the marker systems discussed below are all (gene)-targeted markers, which have the potential to become functional. These markers being part of the cDNA/EST-sequences, are expected to represent the functional component of the genome i.e., gene(s), in contrast to all other random DNA based markers that are developed/generated from the anonymous genomic DNA sequences/domains irrespective of their genic content/information. Especially I sited Poczai et al’ reviews, advances in plant gene-targeted and functional markers. Their reviews may be some useful information to study molecular markers in plants.

SSR Marker Related to Major Characteristics Affected Kernel Quality in Waxy Corn Inbred Lines (찰옥수수 자식계통의 주요 품질특성과 관련된 SSR마커)

  • Jung, Tae-Wook;Moon, Hyeon-Gui;Son, Beom-Young;Kim, Sun-Lim;Kim, Soon-Kwon
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.51 no.spc1
    • /
    • pp.185-192
    • /
    • 2006
  • This experiment was conducted to assess genetic diversity of waxy corn inbred lines and to identify SSR markers related to major characteristics affected kernel quality for improving waxy corn $F_1$ hybrid with good quality. Diversity of 64 waxy com inbred lines was evaluated using 30 microsatellite markers. The 30 microsatellite markers representing 30 loci in the maize genome detected polymorphisms among the 64 inbred lines and revealed 225 alleles with a mean of 7.5 alleles per primer. The polymorphism Information content (PIC) value ranged from 0.14 to 0.87, with an average of 0.69. Based on Nei's genetic distances, the 64 inbred lines were classified into 9 groups by the cluster analysis. The group I included 26 inbred lines (41%), other groups included 3 to 9 inbred lines. One-way analysis of variance was conducted to identify significant relationship between individual markers and major characteristics that affect kernel quality. The analysis showed that umc1019 was related to amylopectin and crude protein content, me 1020 to amylopectin content and peak viscosity, and bnlg1537 to 100-kernel weight, kernel length, and kernel width.

High-density genetic mapping using GBS in Chrysanthemum

  • Chung, Yong Suk;Cho, Jin Woong;Kim, Changsoo
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.57-57
    • /
    • 2017
  • Chrysanthemum is one of the most important floral crop in Korea produced about 7 billion dollars (1 billion for pot and 6 billion for cutting) in 2013. However, it is difficult to breed and to do genetic study because 1) it is highly self-incompatible, 2) it is outcrossing crop having heterozygotes, and 3) commercial cultvars are hexaploid (2n = 6x = 54). Although low-density genetic map and QTL study were reported, it is not enough to apply for the marker assisted selection and other genetic studies. Therefore, we are trying to make high-density genetic mapping using GBS with about 100 $F_1s$ of C. boreale that is oHohhfd diploid (2n = 2x = 18, about 2.8Gb) instead of commercial culitvars. Since Chrysanthemum is outcrossing, two-way pseudo-testcross model would be used to construct genetic map. Also, genotype-by-sequencing (GBS) would be utilized to generate sufficient number of markers and to maximize genomic representation in a cost effective manner. Those completed sequences would be analyzed with TASSEL-GBS pipeline. In order to reduce sequence error, only first 64 sequences, which have almost zero percent error, would be incorporated in the pipeline for the analysis. In addition, to reduce errors that is common in heterozygotes crops caused by low coverage, two rare cutters (NsiI and MseI) were used to increase sequence depth. Maskov algorithm would also used to deal with missing data. Further, sparsely placed markers on the physical map would be used as anchors to overcome problems caused by low coverage. For this purpose, were generated from transcriptome of Chrysanthemum using MISA program. Among those, 10 simple sequence repeat (SSR) markers, which are evenly distributed along each chromosome and polymorphic between two parents, would be selected.

  • PDF

Identification of Quantitative Trait Loci Associated with Resistance to Bacterial Pustule (Xanthomonas axonopodis pv. glycines) in Soybean (SSR 분자표지이용 콩 불마름병 저항성 관여 양적형질 유전자좌(QTL) 분석)

  • Seo, MinJung;Kang, Sung-Taeg;Moon, Jung-Kyung;Lee, Seukki;Kim, Yul-Ho;Jeong, Kwang-Ho;Yun, Hong-Tae
    • Korean Journal of Breeding Science
    • /
    • v.41 no.4
    • /
    • pp.456-462
    • /
    • 2009
  • Bacterial pustule (BP), caused by Xanthomonas axonopodis pv. glycines, is prevalent disease in major soybean production areas. BP can reduce seed yield as well as seed quality. To identify the genomic region associated with the resistance to BP, QTL analysis was conducted using $F_{10}$ RIL (recombinant inbred lines) population, Keunolkong${\times}$Shinpaldalkong. Four QTLs for BP disease were identified on the linkage group B2, D2, I and K in field accounts for 36.4% of the phenotypic variation. Especially, QTL at near of Satt135 on LG D2 was identified in green house experiment explaining 20.9% of the phenotypic variation was found to be a major QTL conferring BP. One of these QTLs, Satt135 on the LG D2, was also identified in green house experiment. In both field and green house condition, the position of major QTL for BP was detected between Satt135 and Satt397 on the LG D2. The major QTL for BP may be used for minimizing soybean BP through effective marker-assisted selection (MAS).

QTL Analysis of Seed and Growth Traits using RIL Population in Soybean (콩 종실 및 생육형질 연관 분자표지 탐색)

  • Kim, Jeong-Soon;Song, Mi-Hee;Lee, Janf-Yong;Ahn, Sang-Nag;Ku, Ja-Hwan
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.53 no.1
    • /
    • pp.85-92
    • /
    • 2008
  • An RIL population from a Shinpaldalkong2/GC83006 cross was employed to identify quantitative trait loci (QTL) associated with agronomic traits in soybean. The genetic map consisted of 127 loci which covered about 3,000cM and were assigned into 20 linkage groups. Phenotypic data were collected for the following traits; plant height, leaf area, flowering time, pubescence color, seed coat color and hilum color in 2005. Seed weight was evaluated using seeds collected in 2003 to 2005 at Suwon and in 2005 at Pyeongchang and Miryang sites. Three QTLs were associated with 100-seed weight in the combined analysis across three years. Among the three QTLs related to seed weight, all GC83006 alleles on LG O ($R^2\;=\;12.5$), LG A1 ($R^2\;=\;10.1$) and LG C2 ($R^2\;=\;11.5$) increased the seed weight. A QTL conditioning plant height was linked to markers including Satt134 (LG C2, $R^2\;=\;25.4$), and the GC83006 allele increased plant height at this QTL locus. For two QTLs related to leaf area, 1aM on LG M ($R^2\;=\;10.0$) and laL on LG L ($R^2\;=\;8.6$), the Shinpaldalkong2 alleles had positive effect to increase the leaf area. Satt134 on LG C2 ($R^2\;=\;41.0$) was associated with QTL for days to flowering. Satt134 (LG C2) showed a linkage to a gene for pubescence color. Satt363 (LG C2) and Satt354 (LG I) were linked to the hilum color gene, and Sat077 (LG D1a) was linked to the seed coat color. The QTL conditioning plant height was in the similar genomic location as the QTLs for days to flowering in this population, indicating pleiotropic effect of one gene or the tight linkage of several genes. These linked markers would be useful in marker assisted selection for these traits in a soybean breeding program.