Browse > Article
http://dx.doi.org/10.5352/JLS.2015.25.7.839

An Overview for Molecular Markers in Plants  

Huh, Man Kyu (Department of Molecular Biology, Dong-eui University)
Publication Information
Journal of Life Science / v.25, no.7, 2015 , pp. 839-848 More about this Journal
Abstract
A molecular marker is a molecule contained within a sample taken from an organism or other matter. The development of molecular techniques for genetic analysis has led to a great contribution to our knowledge of plant genetics and our understanding of the structure and behavior of various genomes in plants. Recently, functional molecular markers have been developed to detect the presence of major genes from the analysis of pedigreed data in absence of molecular information. DNA markers have developed into many systems based on different polymorphism-detecting techniques or methods such as RFLP, AFLP, RAPD, SSR, SNP, etc. A new class of very useful DNA markers called genic molecular markers utilizing the ever-increasing archives of gene sequence information being accumulated under the EST sequencing projects on a large number of plant species. Functional markers are derived from polymorphic sequences, and are more likely to be involved in phenotypic trait variation. Based on this conceptual framework, the marker systems discussed below are all (gene)-targeted markers, which have the potential to become functional. These markers being part of the cDNA/EST-sequences, are expected to represent the functional component of the genome i.e., gene(s), in contrast to all other random DNA based markers that are developed/generated from the anonymous genomic DNA sequences/domains irrespective of their genic content/information. Especially I sited Poczai et al’ reviews, advances in plant gene-targeted and functional markers. Their reviews may be some useful information to study molecular markers in plants.
Keywords
DNA markers; functional molecular markers; plants; PCR; Poczai et al.;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Galasso, I., Manca, A., Braglia, L., Martinelli, T., Morello, L. and Breviario, D. 2010. h-TBP: an approach based on intron-length polymorphism for the rapid isolation and characterization of the multiple members of the β-tubulin gene family in Camelina sativa (L.) Crantz. Mol. Breeding 28, 635-645.
2 Collard, B. C. Y. and Mackill, D. J. 2009a. Conserved DNA-derived polymorphism (CDDP): a simple and novel method for generating DNA markers in plants. Plant Mol. Biol. Rep. 27, 558-562.   DOI
3 Collard, B. C. Y. and Mackill, D. J. 2009b. Start codon targeted (SCoT) polymorphism: a simple, novel DNA marker technique for generating gene-targeted markers in plants. Plant Mol. Biol. Rep. 27, 86-93.   DOI
4 Desmarais, E., Lanneluc, I. and Lagnel, J. 1998. Direct amplification of length polymorphisms (DALP), or how to get and characterize new genetic markers in many species. Nucleic Acids Res. 26, 1458-1465.   DOI
5 Gui, Y., Yan, G., Bo, S., Tong, Z., Wang, Y., Xiao, B., Lu, X., Li, Y., Wu, W. and Fan, L. 2011. iSNAP: a small RNA-based molecular marker technique. Plant Breeding 130, 515-520.   DOI
6 Hamada, H. M., Petrino, M. G. and Kakunaga, T. 1982. A novel repeated element with Z-DNA forming potential is widely found in evolutionarily diverse eukaryotic genomes. Proc. Natl. Acad. Sci. USA 79, 6465-6469.   DOI
7 Hu, J. and Vick, B. B. A. 2003. Target region amplification polymorphism: a novel marker technique for plant genotyping. Plant Mol. Biol. Rep. 21, 289-294.   DOI
8 Breviario, D., Baird, W. V., Sangoi, S., Hilu, K., Blumetti, P. and Gianì, S. 2007. Polymorphism and resolution in targeted fingerprinting with combined β-tubulin introns. Mol. Breeding 20, 249-259.   DOI
9 Williams, J. G. K., Kubelik, A. R., Livak, K. J., Rafalski, J. A. and Tingey, S. V. 1990. DNA polymorphism’s amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Res. 18, 6531-6535.   DOI
10 Zietkiewicz, E., Rafalski, A. and Labuda, D. 1994. Genome fingerprinting by simple sequence repeat (SSR)-anchored polymerase chain reaction amplification. Genomics 20, 176-183.   DOI
11 Seibt, K. M., Wenke, T., Wollrab, C., Junghans, H., Muders, K., Dehmer, K. J., Diekmann, K. and Schmidt, T. 2012. Development and application of SINE-based markers for genotyping of potato varieties. Theor. Appl. Genet. 125, 185-196.   DOI
12 Bryan, G. J., Stephenson, P., Collins, A., Kirby, J., Smith, J. B. and Gale, M. D. 1999. Low levels of DNA sequence variation among adapted genotypes of hexaploid wheat. Theor. Appl. Genet. 99, 192-198.   DOI
13 Bachem, C. W., van der Hoeven, R. S., de Bruijn, S. M., Vreugdenhil, D., Zabeau, M. and Visser, R. G. 1996. Visualization of differential gene expression using a novel method of RNA fingerprinting based on AFLP: analysis of gene expression during potato tuber development. Plant J. 9, 745-753.   DOI
14 Bardini, M., Lee, D., Donini, P. and Mariani, A. 2004. Tubulin-based polymorphism (TBP): a new tool, based on functionally relevant sequences, to assess genetic diversity in plant species. Genome 291, 281-291.
15 Bostein, D., White, R. L., Skolnick, M. and Davis, R. W. 1980. Construction of a genetic linkage map in man using restriction fragment length polymorphisms. Am. J. Hum. Genet. 32, 314-331.
16 Waugh, R., McLean, K., Flavell, A. J., Pearce, S. R., Kumar, A., Thomas, B. B. and Powell, W. 1997. Genetic distribution of Bare-1-like retrotransposable elements in the barley genome revealed by sequence-specific amplification polymorphisms (S-SAP). Mol. Gen. Genet. 253, 687-694.   DOI
17 Van der Linden, C. G., Wouters, D. C. A. E., Mihalka, V., Kochieva, E. Z., Smulders, M. J. M. and Vosman, B. 2004. Efficient targeting of plant disease resistance loci using NBS profiling. Theor. Appl. Genet. 109, 384-393.   DOI
18 Vos, P., Hogers, R., Bleeker, M., Reijans, M., Van De Lee, T., Hornes, M., Frijters, A., Pot, J., Peleman, J., Kuiper, M. and Zabeau, M. 1995. AFLP: a new technique for DNA fingerprinting. Nucleic Acids Res. 23, 4407-4414.   DOI
19 Wang, Q., Zhang, B. and Lu, Q. 2009. Conserved region amplificationpolymorphism (CoRAP), a novel marker technique for plant genotyping in Salvia miltiorrhiza. Plant Mol. Biol. Rep. 27, 139-143.   DOI
20 Weining, S. and Langridge, P. 1991. Identification and mapping of polymorphisms in cereals based on the polymerase chain reaction. Theor. Appl. Genet. 82, 209-216.
21 Yamanaka, S., Suzuki, E., Tanaka, M., Takeda, Y., Watanabe, J. A. and Watanabe, K. N. 2003. Assessment of cytochrome P450 sequences offers a useful tool for determining genetic diversity in higher plant species. Theor. Appl. Genet. 108, 1-9.   DOI
22 Huh, M. K., Bang, K. H. and Choi, J. S. 2007. Identification of Atractylodes japonica and A. macrocephala by AFLP and SCAR Markers. Horti. Environ. Biotech. 47, 201-205.
23 Kalendar, R., Antonius, K., Smýkal, P. and Schulman, A. H. 2010. iPBS: a universal method for DNA fingerprinting and retrotransposon isolation. Theor. Appl. Genet. 121, ㅊ.   DOI
24 Leister, D., Ballvora, A., Salamini, F. and Gebhardt, C. 1996. A PCR-based approach for isolating pathogen resistance genes from potato with potential for wide application in plants. Nat. Genet. 14, 421-429.   DOI
25 Li, G. and Quiros, C. F. 2001. Sequence-related amplified polymorphism (SRAP), a new marker system based on a simple PCR reaction: its application to mapping and gene tagging in Brassica. Theor. Appl. Genet. 103, 455-461.   DOI
26 Kalendar, R., Grob, T., Regina, M., Suoniemi, A. and Schulman, A. 1999. IRAP and REMAP: two new retrotransposon-based DNA fingerprinting techniques. Theor. Appl. Genet. 98, 704-711.   DOI
27 Kantety, R. V., La Rota, M., Matthews, D. E. and Sorrells, M. E. 2002. Data mining for simple sequence repeats in expressed sequence tags from barley, maize, rice, sorghum and wheat. Plant Mol. Biol. 48, 501-510.   DOI
28 McClintock, B. 1950. The origin and behavior of mutable loci in maize. PNAS 36, 344-355.   DOI
29 Pang, M., Percy, R. G., Hughs, E. and Zhang, J. 2008. Promoter anchored amplified polymorphism based on random amplified polymorphic DNA (PAAPRAPD) in cotton. Euphytica 167, 281-291.
30 Poczai, P., Verga, I., Laos, M., Cseh, A., Bell, N., Valkonen, J. PT. and Hyvonen, J. 2013. Advances in plant gene-targeted and functional markers: a review. Plant Methods 9, 6.   DOI
31 Cernák, I., Taller, J., Wolf, I., Fehér, E., Babinszky, G., Alföldi, Z., Csanádi, G. and Polgár, Z. 2008. Analysis of the applicability of molecular markers linked to the PVY extreme resistance gene Rysto, and the identification of new markers. Acta Biol. Hun. 59, 195-203.   DOI