Identification of Quantitative Trait Loci Associated with Resistance to Bacterial Pustule (Xanthomonas axonopodis pv. glycines) in Soybean

SSR 분자표지이용 콩 불마름병 저항성 관여 양적형질 유전자좌(QTL) 분석

  • Received : 2009.11.25
  • Published : 20091200

Abstract

Bacterial pustule (BP), caused by Xanthomonas axonopodis pv. glycines, is prevalent disease in major soybean production areas. BP can reduce seed yield as well as seed quality. To identify the genomic region associated with the resistance to BP, QTL analysis was conducted using $F_{10}$ RIL (recombinant inbred lines) population, Keunolkong${\times}$Shinpaldalkong. Four QTLs for BP disease were identified on the linkage group B2, D2, I and K in field accounts for 36.4% of the phenotypic variation. Especially, QTL at near of Satt135 on LG D2 was identified in green house experiment explaining 20.9% of the phenotypic variation was found to be a major QTL conferring BP. One of these QTLs, Satt135 on the LG D2, was also identified in green house experiment. In both field and green house condition, the position of major QTL for BP was detected between Satt135 and Satt397 on the LG D2. The major QTL for BP may be used for minimizing soybean BP through effective marker-assisted selection (MAS).

본 연구는 최근 우리나라에서 급격하게 발생되고 있는 콩 불마름병에 대한 저항성 중간모본을 육성하고자 할 때 marker-assisted selection에 적용할 수 있는 저항성 근접 분자표지를 개발하고자 수행하였다. 1. 불마름병에 이병성인 큰올콩과 저항성인 신팔달콩의 RIL 116 계통에 대하여 콩 불마름병 균주 8ra에 대한 저항성과 연관된 QTL을 탐색한 결과 포장에서는 연관군 B2, D2, I와 K에서, 온실에서는 연관군 D2, C1과 F에서 불마름병과 관련된 QTL이 나타났다. 2. 포장과 온실에서 공통적으로 탐색된 QTL은 연관군 D2에 위치해 있었는데 정확한 위치는 포장과 온실에서 각각 Satt135와 Satt397의 사이에서 LOD score 6.64와 3.43으로 Satt135에서 14.01 cM과 0.01 cM 떨어진 위치에서 탐색되었다.

Keywords

Acknowledgement

Supported by : 국립식량과학원

References

  1. Arun S, Nair PM, Pawar SE. 1993. Identification of soybean strains resistant to Xanthomonas campestris pv. glycines. Euphytica. 67:95-99 https://doi.org/10.1007/BF00022730
  2. Churchill GA, Doerge RW. 1994. Empirical threshold values for quantitative trait mapping. Genetics. 138:963 -971
  3. Collard BCY, Jahufer MZZ, Brouwer JB, Pang ECK. 2005. An introduction to markers, quantitative trait loci (QTL) mapping and marker-assisted selection for crop improvement: The basic concepts. Euphytica. 142:169-196 https://doi.org/10.1007/s10681-005-1681-5
  4. Cregan PB, Jarvik T, Bush AL, Shoemaker RC, Lark KG, Kahler AL, Kaya N, VanToai TT, Lohnes DG, Chung J, Specht JE. 1999. An integrated genetic linkage map of the soybean. Crop Sci. 39:1464-1490 https://doi.org/10.2135/cropsci1999.3951464x
  5. Hartwig EE, Johnson HW. 1953. Effect of the bacterial pustule on yield and chemical composition of soybeans. Agron. J. 45:22-23 https://doi.org/10.2134/agronj1953.00021962004500010005x
  6. Hartwig EE, Lehman SG. 1951. Inheritance of resistance to the bacterial pustule disease in soybeans. Agron. J. 43:226-229 https://doi.org/10.2134/agronj1951.00021962004300050005x
  7. Hwang IG, Lim SM. 1998. Pathogenic variability in isolates of Xanthomonas campestris pv. glycines. Korean J. Plant Pathol. 14(1):19-22
  8. Kang ST. 2002. Analysis of QTL for pod dehiscence based on molecular map in soybean [Glycine max (L.) Merr]. Ph. D. thesis. Seoul Nat. Uni
  9. Kim, HS, Park HJ, Heu SG, Jung J. 2001. Possible association of indole-3-acetic acid production by Xanthomonas axonopodis pv. glycines with development of pustule disease in soybean. Agric. Chem. Biotechnol. 44:173-176
  10. Lee SD. 1999. Occurrence and characterization of major plant bacterial diseases in Korea. Ph. D. thesis. Seoul Nat. Uni
  11. Lee SH, Paek NC, Heu SK. 2002. Genetic analysis for bacterial leaf pustule resistance for improvement of soybean varieties. pp.92
  12. Lehman SG. 1948. Soybeans respond to dusting for disease control. Research and farming. Seventieth annual report. NC. Agr. Exp. Sta
  13. Lindhout P. 2002. The perspectives of polygenic resistance in breeding for durable disease resistance. Euphytica. 124:217-226 https://doi.org/10.1023/A:1015686601404
  14. Narvel JM, Jakkula LR, Phillips DV, Wang T, Lee SH, Boerma HR. 2001. Molecular mapping of rxp conditioning reaction to bacterial pustule in soybean. The American Genetic Association. 92:267-270 https://doi.org/10.1093/jhered/92.3.267
  15. Palmer RG, Lim SM, Hedges BR. 1992. Testing for linkage between the rxp locus and nine isozyme loci in soybean. Crop Sci. 32:681-683 https://doi.org/10.2135/cropsci1992.0011183X003200030020x
  16. Pilet-Nayel ML, Muehlbauer FJ, McGee RJ, Kraft JM, Baranger A. Coyne CJ. 2002. Quantitative trait loci for partial resistance to Aphanomyces root rot in pea. Theor. Appl. Genet. 28-39 https://doi.org/10.1007/s00122-002-0985-2
  17. Van KJ, Ha BK, Kim MY, Moon JK, Paek NC, Heu SG, Lee SH. 2004. SSR mapping of genes conditioning soybean resistance to six isolates of Xanthomonas axonopodis pv. glycines. Korean J. Genet. 26(1):47-54
  18. Weber CR, Dunleavy JM, Fehr WR. 1966. Effect of bacterial pustule on closely related soybean lines. Agron. J. 58:544-545 https://doi.org/10.2134/agronj1966.00021962005800050027x
  19. Yang JJ. 2004. Development of DNA markers for resistance gene to bacterial leaf pustule in soybean [Glycine max (L.) Merr.]. Master’s thesis. Seoul Nat. Uni