Browse > Article

QTL Analysis of Seed and Growth Traits using RIL Population in Soybean  

Kim, Jeong-Soon (Environmental & Biotechnology Division, National Institute of Crop Science, RDA)
Song, Mi-Hee (Department of Agronomy, Chungnam National University)
Lee, Janf-Yong (Environmental & Biotechnology Division, National Institute of Crop Science, RDA)
Ahn, Sang-Nag (Department of Agronomy, Chungnam National University)
Ku, Ja-Hwan (Environmental & Biotechnology Division, National Institute of Crop Science, RDA)
Publication Information
KOREAN JOURNAL OF CROP SCIENCE / v.53, no.1, 2008 , pp. 85-92 More about this Journal
Abstract
An RIL population from a Shinpaldalkong2/GC83006 cross was employed to identify quantitative trait loci (QTL) associated with agronomic traits in soybean. The genetic map consisted of 127 loci which covered about 3,000cM and were assigned into 20 linkage groups. Phenotypic data were collected for the following traits; plant height, leaf area, flowering time, pubescence color, seed coat color and hilum color in 2005. Seed weight was evaluated using seeds collected in 2003 to 2005 at Suwon and in 2005 at Pyeongchang and Miryang sites. Three QTLs were associated with 100-seed weight in the combined analysis across three years. Among the three QTLs related to seed weight, all GC83006 alleles on LG O ($R^2\;=\;12.5$), LG A1 ($R^2\;=\;10.1$) and LG C2 ($R^2\;=\;11.5$) increased the seed weight. A QTL conditioning plant height was linked to markers including Satt134 (LG C2, $R^2\;=\;25.4$), and the GC83006 allele increased plant height at this QTL locus. For two QTLs related to leaf area, 1aM on LG M ($R^2\;=\;10.0$) and laL on LG L ($R^2\;=\;8.6$), the Shinpaldalkong2 alleles had positive effect to increase the leaf area. Satt134 on LG C2 ($R^2\;=\;41.0$) was associated with QTL for days to flowering. Satt134 (LG C2) showed a linkage to a gene for pubescence color. Satt363 (LG C2) and Satt354 (LG I) were linked to the hilum color gene, and Sat077 (LG D1a) was linked to the seed coat color. The QTL conditioning plant height was in the similar genomic location as the QTLs for days to flowering in this population, indicating pleiotropic effect of one gene or the tight linkage of several genes. These linked markers would be useful in marker assisted selection for these traits in a soybean breeding program.
Keywords
Soybean; SSR marker; QTL; morphological trait; RIL;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Kim, H. S., S. H. Lee, and Y. H. Lee. 2000. A genetic linkage map of soybean with RFLP, RAPD, SSR and morphological markers. Kor J. Crop Sci. 45(2) : 123-127   과학기술학회마을
2 Keim, P., B. W. Diers, T. C. Olson, and R. C. Shoemaker. 1990. RFLP mapping in soybean: Association between maker loci and variation in quantitative traits. Genetics. 126 : 735-742
3 Lark, K. G., J. Orf, and Mansur, L. M. 1994. Epistatic expression of quantitative trait loci (QTL) in soybean (Glycine max L. Merr) determined by QTL association with RFLP alleles. Theor. Appl. Genet. 86 : 901-906
4 Lee, S. H. 2001. Analysis of QTL for pod dehiscence based on molecular map in soybean. J. of Agri. & Life Science 5 : 16-18
5 Shoemaker, R. C. and J. E. Specht 1995. Integration of the soybean molecular and classical genetic linkage groups. Crop Sci. 35 : 436- 446   DOI   ScienceOn
6 Toda, K., D. Yang, N. Yamanaka, S. Watanabe, K. Harada, and R. Takahashi. 2002. A single-base deletion in soybean flavonoid 3'-hydroxylase gene is associated with gray pubescence color. Plant Mol. Biol. 50 : 187-196   DOI   ScienceOn
7 Specht, J. E., K. Chase, M. Macrander, G. L. Craef, J. Chung, J. P. Markwell, M. Cermann, J. H. Orf, and K. G. Lark 2001. Soybean response to water: QTL analysis of drought tolerance. Crop Sci. 41 : 493-509   DOI
8 Palmer, R. G. and T. C. Kilen. 1987. Qualitative genetics and cytogenetics. In: J. R. wilcox (Ed.) Soybeans: Improvement, Production, and Uses, 2nd ed. (Agronomy Monograph 16), ASA, CSSA and SSSA, Madison, WI, pp. 135-156
9 Watanabe, S., T. Tajuddin, N. Yamanaka, M. Hayashi, and K. Harada. 2004. Analysis of QTLs for reproductive development and seed quality traits in soybean using recombinant inbred lines. Breeding Science 54 : 399-407   DOI   ScienceOn
10 Liu, B., T., Fujita., Z. H. Yan, S. Sakamoto, D. Xu, and J. Abe. 2007. QTL mapping of domestication-related traits in Soybean (Glycine max). Annals of Botany. 100:1027-1038   DOI   ScienceOn
11 Lander, E. S., P. Green, J. Abrahamson, A. Barlow, M. J. Day, S. E. Lincoln, and L. Newberg 1987. Mapmaker: an Interactive computer package for constructing primary genetic linkage map of experimental and natural populations. Genomics 1 : 174-181   DOI
12 Cianzio, S. R., W. R. Fehr, J. A. Hoeck, S. L. Johnson, R. C. Shoemaker, and G. A. Welke. 2003. Molecular marker analysis of seed size in soybean. Crop Sci. 43 : 68-74   DOI   ScienceOn
13 Sullivan, P. 2003. Edible soybean production and marketing. Curre. Topi. C.T. 171 pp. 1-3
14 Chung J., H. L. Babka, G. L., P. E. Graef, D. J. Staswick, P. B. Lee, R. C. Cregan, R. C. Shoemaker, and J. E. Specht. 2003. The seed protein, oil, and yield QTL on soybean linkage group I. Crop Sci. 43 : 1053-1067   DOI   ScienceOn
15 Lee, S. H., M. A. Bailey, M. A. R. Mian, E. R. Shipe, D. A. Ashley, W. A. Parrott, R. S. Hussey, and H. R. Boerma. 1996a. Identification of quantitative trait loci for plant height, lodging, and maturity in a soybean population segregating for growth habit. Theor. Appl. Genet. 92 : 516-523   DOI   ScienceOn
16 Palmer, R. G. and Y. T. Kiang. 1990. Linkage map of soybean (Glycine max L.). Cold spring Harbor Laboratory, Cold Spring Harbor, NY
17 Shoemaker, R.C. and T. C. Olson. 1993. Molecular linkage map of soybean (Glycine max (L.) Merr). p. 6131-6138. In S. J. O'Brien (ed.) Genetic maps: Locus maps of complex genomes. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York
18 So, E. H., J. H. Ku , K. Y. Park, and Y. H. Lee. 2001. Varietal difference of isoflavone content and antioxidant activity in soybean. Korean J. of Breeding. 33(1) : 35-39
19 Tasma, I. M., L. L. Lorenzen, D. E. Green, and R. C. Shoemaker. 2001. Mapping genetic loci for flowering times, maturity and photoperiod insensitivity in soybean. Mol Breed. 8 : 25-35   DOI   ScienceOn
20 Holt, S. 1997. Soya: The health food of the next millenium, Korean Soybean Digest. 14(2) : 77-90
21 Orf, J. H., K. Chase, F. R. Alder, L. M. Mansur, and K. G. Lark 1999. Genetics of soybean agronomic traits; $\Pi$ Interaction between yield quantitative trait loci in soybean. Crop Sci. 39 : 1652-1657   DOI
22 Stephens, P. A. and C. D. Nickel. 1992. inheritance of pink flower in soybean. Crop Sci. 32 : 1131-1132   DOI
23 Mansur, L. M., J. H. Orf, K. Chase, T. Jarvik, P. B. Cregan, and K. G. Lark. 1996. Genetic mapping of agronomic traits using recombinant inbred lines of soybean (Glycine max (L.) Merr). Crop Sci. 36 : 1327-1336   DOI   ScienceOn
24 Cregan, P. B. 1999. DNA markers, maps, and technologies. Proceeding of world soybean research conference VI : pp. 46-61
25 Lee, S. H., K. R. Park, Y. H. Ryu, and S. D. Kim. 1997. Construction and integration of soybean RFLP genetic linkage maps. Korean J. of Breeding 29(3) : 282-288
26 Owen, F. V. 1928. Inheritance studies in soybean. III. seedcoat color and summary of all other mendelian characters thus far reported. Genetics 13 : 50-79
27 Hartwing, E. E. 1973. Varietal development. P. 187-207. In B. E. Caldwell(ed.) Soybeans: Improvement, production, and uses. Agron. Monogr. 16. ASA, Madison. WI
28 Lee, S. H., M. A. Bailey, M. A. R. Mian, T. E. Carter, E. R. Shipe, D. A. Ashley, W. A. Parrott, R. S. Hussey, and H. R. Boerma. 1996b. RFLP loci associated with soybean seed protein and oil content across populations and locations. Theor. Appl. Genet. 93 : 649-657   DOI   ScienceOn
29 Murray, M. G. and W. F. Thompson. 1980. Rapid isolation of high molecular weight plant DNA. Nucleic Acids Res. 18 : 4321-4325
30 Devine, T. E., T. C. Kilen, and J. J. O'Neill. 1991. Genetic linkage of the Phytophtora resistance gene Rps2 and the modulation response gene Rj2 in the Soybean. Crop Sci. 31 : 713-715   DOI
31 Maughan P. J., M. A. Saghai Maroof, and G. R. Buss. 1996. Molecular-marker analysis of seed-weight:genomic locations, gene action, and evidence for orthologous evolution among three legume species. Theor. Appl. Genet. 93 : 574-579   DOI   ScienceOn
32 Zhang, W. K., Y. J. Wang, and G. Z. Luo. 2004. QTL mapping of ten agronomic traits on the soybean genetic map and their association with EST markers. Theor. Appl. Genet. 108 : 1131-1139   DOI
33 Brummer, E. C., G. L. Graef, J. Orf, J. R. Wilcox, and R. C. Shoemaker. 1997. Mapping QTL for seed protein and oil content in eight soybean populations. Crop Sci. 37 : 370-378   DOI   ScienceOn
34 Hoecka, J. A., W. R. Fehr, R. C. Shoemaker, G. A. Welkea, S. L. Johnson, and S. R. Cianioa. 2003. Molecular marker analysis of seed size in soybean. Crop Sci. 43 : 68-74   DOI   ScienceOn
35 Keim, P., R. C. Shoemaker, R. G. Palmer. 1996. A high density soybean genetic map based on AFLP. Crop Sci. 36 : 786-792
36 Mian M. A. R., M. A. Bailey, J. P. Tamulonis, E. R. Shipe, T. E. Carter, J. W. A. Parrott, D. A. Ashley, R. S. Hussey, and H. R. Borema 1996. Molecular markers associated with seed weight in two soybean populations. Theor. Appl. Genet. 93 : 1011-1016   DOI   ScienceOn
37 Muehlbauer, G. J., J. E. Specht, P. E. Staswick, G. L. Graef, and M. A. Thomas-Compton. 1989. Application of the near isogenic line gene mapping techniques to isozyme markers. Crop Sci. 29 : 1548-1553   DOI
38 Smith, K. J., and W. Huyser. 1987. World Distribution and Significance of Soybean. In: Soybeans: Improvement, Production, and Uses; Second Edition. Ed. J. R. Wilcox. (Agronomy Monograph 16), ASA, CSSA and SSSA, Madison, WI, pp. 1-22
39 Nelson, J. C. 1997. QGENE: software for marker-based genome analysis and breeding. Mol. Breed. 3 : 239-245   DOI   ScienceOn
40 Park, K. Y., Y. H. Lee, S. D. kim, and E. H. Hong. 2000. Review and future planning for soybean breeding in Korea. Korea Soybean Digest. 17(1) : 13-26
41 Palmer, R. G., S. M. Lim, and R. G. Hedhes. 1992. Testing for linkage between the Rxp locus and nine isozyme loci in soybean. Crop Sci. 32 : 681-683   DOI