Browse > Article

Diversity and Geographical Relationships by SSR Marker in Subgenus Soja Originated from Korea  

Cho Yang-Hee (National Institute of Agricultural Biotechnology, RDA)
Yoon Mun-Sup (National Institute of Agricultural Biotechnology, RDA)
Lee Jeong-Ran (National Institute of Agricultural Biotechnology, RDA)
Baek Hyung-Jin (National Institute of Agricultural Biotechnology, RDA)
Kim Chang-Yung (National Institute of Agricultural Biotechnology, RDA)
Kim Tae-San (National Institute of Agricultural Biotechnology, RDA)
Cho Eun-Gi (Research & Development Bureau, RDA)
Lee Hee-Bong (College of Agriculture and Life Sciences, Chungnam National University)
Publication Information
KOREAN JOURNAL OF CROP SCIENCE / v.51, no.3, 2006 , pp. 239-247 More about this Journal
Abstract
This study was carried out to investigate polymorphism, gene diversity, and geographical relationships of 81 Korean wild (Glycine soja) and 130 cultivated soybeans (G. max) using seven simple sequence repeat (SSR) markers. A total of 144 alleles were observed in 211 accessions with an average of 20.6. Each SSR loci showed 13 (Satt532) to 41 (Sat_074) multialleles. The range of alleles within the loci was wider in wild soybean than the cultivated soybeans. The average genetic diversity values were 0.88 and 0.69 in wild and cultivated soybeans, respectively. In a scatter diagram of wild and cultivated soybeans based on canonical discriminant analysis, CAN1 accounted for 84.2% while CAN2 did 8.5%. Two species were grouped into three: group I (G. max), group II (G. soja), and group III (complex of G. max and G. soja). The geographical relationships of wild soybean were distinguished into two groups: Gyeonggi for Group I, and Gyeongsang, Jeolla, Gangwon, and Chungcheong for Group II. Those of cultivated soybeans were distinguished into Gyeonggi, Gangwon, and Gyeongsang for Group I, and Jeolla and Chungcheong for Group II. Therefore, the geographical relationships of wild soybeans were well typified based on the ecosystems of the Korean peninsula.
Keywords
Glycine max; G. soja; SSR; gene diversity; geographical relationship;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Xu, D. H., J. Abe, J. Y. Gai, and Y. Shimamoto. 2002. Diversity of chloroplast DNA SSRs in wild and cultivated soybean: evidence for multiple origins of cultivated soybean. Theor. Appl. Genet. 105 : 645-653   DOI
2 Yoon, M. S., J. W. Ahn, J. H. Kang, H. J. Baek, N. K. Park, and Y. D. Rho. 2000b. Genotypic and geographical variations of ${\beta}-amylase$ isozyme in soybean land races by isoelectric focusing (IEF). Korean J. Crop Sci. 45(1) : 139-142
3 Park, K. S. and M. S. Yoon. 1997. Variation of leucine aminopeptidase isozyme in Korean land races and wild soybeans. Korean J. Crop Sci. 42(2) : 129-133   과학기술학회마을
4 Dong, Y. S., B. C. Zhuang, L. M. Zhao, H. Sun, and M. Y. He. 2001. The genetic diversity of annual wild soybean grown in China. Theor. Appl. Genet. 103 : 98-103   DOI
5 Harlan, J. R. and J. M. J. de Wet. 1971. Toward a rational classification of cultivated plants. TAXON 20(4) : 509-517   DOI   ScienceOn
6 Hymowitz, T. 1970. On the domestication of the soybean. Econ. Bot. 24 : 408-421   DOI   ScienceOn
7 Li, Z. and R. L. Nelson. 2002. RAPD marker diversity among cultivated and wild soybean accessions from four Chinese provinces. Crop Sci. 42 : 1737-1744   DOI   ScienceOn
8 Maughan, P. J., M. A. Saghai Maroof, and G. R. Buss. 1995. Microsatellite and amplified sequence length polymorphisms in cultivated and wild soybean. Genome 38 : 715-723   DOI   ScienceOn
9 Shimamoto, Y., J. Abe, Z. Gao, J. Gai, and F. S. Thseng. 2000. Characterizing the cytoplasmic diversity and phyletic relationship of Chinese landraces of soybean, Glycine max, based on RFLPs of chloroplast and mitochondrial DNA. Genet. Resour. Crop Evol. 47 : 611-617   DOI   ScienceOn
10 Shimamoto, Y., A. Hasegawa, J. Abe, M. Ohara, and T. Mikami. 1992. Glycine soja germplasm in Japan: isozyme and chloroplast DNA variation. soybean Genet. Newsl. 19 : 73-77
11 Perry, M. C., M. S. Mcintosh, and A. K. Stoner. 1991. Geographical patterns of variation in the USDA soybean germplasm collection: II. Allozyme frequencies. Crop Sci. 31 : 1356-1360   DOI
12 Abe, J., A. Hasegawa, H. Fukushi, T. Mikami, M. Ohara, and Y. Shimamoto. 1999. Introgression between wild and cultivated soybeans of Japan revealed by RFLP analysis of chloroplast DNAs. Econ. Bot. 53 : 285-291   DOI
13 Perry, M. C. and M. S. McIntosh. 1991. Geographical patterns of variation in the USDA soybean germplasm collection: I. Morphological traits. Crop Sci. 31 : 1350-1355   DOI
14 Nei, M. 1973. Analysis of gene diversity in subdivided populations. Proc. Natl. Acad. Sci. (USA) 70 : 3321-3323
15 Akkaya, M. S., A. A. Bhagwat, and P. B. Cregan. 1992. Length polymorphisms of simple sequence repeat DNA in soybean. Genetics 132 : 1131-1139
16 Kwon, S. H., K. H. Im, and J. R. Kim. 1972. Studies on diversity of seed weight in the Korean soybean land races and wild soybean. Korean J. Breeding 4(1) : 70-74
17 Hymowitz, T. and N. Kaizuma. 1981. Soybean seed protein electrophoresis profiles from 15 Asian countries or regions: Hypotheses on paths of dissemination of soybeans in China. Econ. Bot. 35 : 10-23   DOI   ScienceOn
18 Kollipara, K. P., R. J. Singh, and T. Hymowitz. 1997. Phylogenetic and genomic relationships in the genus Glycine Willd. based on sequences from the ITS region of nuclear rDNA. Genome 40 : 57-68   DOI   ScienceOn
19 Rongwen, J., M. S. Akkaya, A. A. Bhagwat, U. Lavi, and P. B. Cregan. 1995. The use of microsatellite DNA markers for soybean genotype identification. Theor. Appl. Genet. 90 : 43-48
20 Dong, Y. S., L. M. Zhao, B. Liu, Z. W. Wang, Z. Q. Jin, and H. Sun. 2003. The genetic diversity of cultivated soybean grown in China. Theor. Appl. Genet. 108 : 931-936
21 Yoon, M. S., J. W. Ahn, S. J. Park, H. J. Baek, N. K. Park, and Y. D. Rho. 2000a. Geographical patterns of morphological variation in soybean Glycine max (L.) Merrill germplasm. Korean J. Crop Sci. 45(4) : 267-271   과학기술학회마을
22 Cregan, P. B., M. S. Akkaya, A. A. Bhagwat, U. Lavi, and J. Rongwen. 1994. Length polymorphism of simple sequence repeat (SSR) DNA as molecular markers in plants. In Plant Genome Analysis. Current Topics in Plant Molecular Biology. Gresshoff P.M. (ed), CRC press, New York
23 Singh, R. J. and T. Hymowitz. 1988. The genomic relationships between Glycine max (L.) Merr. and G. soja Sieb. and Zucc. As revealed by pachytene chromosome analysis. Theor. Appl. Genet. 76 : 705-711   DOI   ScienceOn
24 Xu, D. H., J. Abe, M. Sakai, and A. Kanazawa, and Y. Shimamoto. 2000. Sequence variation of non-coding regions of chloroplast DNA of soybean and related wild species and its implications for the evolution of different chloroplast haplotypes. Theor. Appl. Genet. 101 : 724-732   DOI
25 Diwan, N. and P. B. Cregan. 1997. Automated sizing of fluorescent-labeled simple sequence repeat (SSR) markers to assay genetic variation in soybean. Theor. Appl. Genet. 95 : 723-733   DOI