QTL Analysis of Seed and Growth Traits using RIL Population in Soybean

콩 종실 및 생육형질 연관 분자표지 탐색

  • Kim, Jeong-Soon (Environmental & Biotechnology Division, National Institute of Crop Science, RDA) ;
  • Song, Mi-Hee (Department of Agronomy, Chungnam National University) ;
  • Lee, Janf-Yong (Environmental & Biotechnology Division, National Institute of Crop Science, RDA) ;
  • Ahn, Sang-Nag (Department of Agronomy, Chungnam National University) ;
  • Ku, Ja-Hwan (Environmental & Biotechnology Division, National Institute of Crop Science, RDA)
  • 김정순 (농촌진흥청 작물과학원 환경생명공학과) ;
  • 송미희 (충남대학교 농업생명과학대학 농학과) ;
  • 이장용 (농촌진흥청 작물과학원 환경생명공학과) ;
  • 안상낙 (충남대학교 농업생명과학대학 농학과) ;
  • 구자환 (농촌진흥청 작물과학원 환경생명공학과)
  • Published : 2008.03.31

Abstract

An RIL population from a Shinpaldalkong2/GC83006 cross was employed to identify quantitative trait loci (QTL) associated with agronomic traits in soybean. The genetic map consisted of 127 loci which covered about 3,000cM and were assigned into 20 linkage groups. Phenotypic data were collected for the following traits; plant height, leaf area, flowering time, pubescence color, seed coat color and hilum color in 2005. Seed weight was evaluated using seeds collected in 2003 to 2005 at Suwon and in 2005 at Pyeongchang and Miryang sites. Three QTLs were associated with 100-seed weight in the combined analysis across three years. Among the three QTLs related to seed weight, all GC83006 alleles on LG O ($R^2\;=\;12.5$), LG A1 ($R^2\;=\;10.1$) and LG C2 ($R^2\;=\;11.5$) increased the seed weight. A QTL conditioning plant height was linked to markers including Satt134 (LG C2, $R^2\;=\;25.4$), and the GC83006 allele increased plant height at this QTL locus. For two QTLs related to leaf area, 1aM on LG M ($R^2\;=\;10.0$) and laL on LG L ($R^2\;=\;8.6$), the Shinpaldalkong2 alleles had positive effect to increase the leaf area. Satt134 on LG C2 ($R^2\;=\;41.0$) was associated with QTL for days to flowering. Satt134 (LG C2) showed a linkage to a gene for pubescence color. Satt363 (LG C2) and Satt354 (LG I) were linked to the hilum color gene, and Sat077 (LG D1a) was linked to the seed coat color. The QTL conditioning plant height was in the similar genomic location as the QTLs for days to flowering in this population, indicating pleiotropic effect of one gene or the tight linkage of several genes. These linked markers would be useful in marker assisted selection for these traits in a soybean breeding program.

신팔달콩2호와 GC83006를 교잡하여 총 118개의 $F_7$ 계통을 육성하였다. 127개의 분자마커를 사용하여 유전자지도를 이용하여 종실 및 생육특성에 대한 QTLs분석을 실시하였으며 그 결과를 요약하면 다음과 같다. 1. 100립중, 경장, 엽면적 그리고 개화까지 일수는 정규분포를 보였다. 100립중을 제외한 3개의 형질에서 양친의 값을 벗어나는 초월변이 계통이 관찰되었는데, 특히 개화까지의 일수는 개화기가 지연되는 쪽으로 초월변이 계통이 다수 관찰되었다. 2. 100립중, 경장, 엽면적 그리고 개차까지 일수에 대한 QTL분석 결과, 전체 7개의 QTL이 탐지되었다. 100립중에 관여하는 3개의 QTL은 전체변이의 $10.1%\;{\sim}\;12.5%$를 설명하였고, 경장은 전체변이의 22%를 설명하는 1개의 QTL이 탐지되었다. 엽면적은 전체 변이의 10% 및 8.6%를 설명하는 2개의 QTL이 탐지되었으며 개화기 일수는 전체 변이의 41.0%를 설명하는 1개의 QTL이 탐지되었다. 3. 신팔달콩2호와 GC83006의 모용은 각각 회색과 갈색이었으며 모용색은 1개의 유전자가 관여하는 것으로 나타났다. 분석결과 모용색은 연관군 C2에 위치하는 Satt134 마커와 밀접히 연관되어 있었다. 제색은 신팔달콩2호와 GC83006이 각각 흑색과 황색이었으며 후대 중에는 갈색의 배꼽을 갖고 있는 계통도 발견되었다. 종피색은 신팔달콩 2호와 GC83006이 각각 황색과 녹색을 보였으며 후대에서 황색과 녹색 계통이 1 : 1의 분리비를 보여 종피색에는 하나의 유전자가 관여하는 것으로 나타났고, 이 유전자는 연관군 D1a의 마커 Satt077과 밀접한 연관을 보였다.

Keywords

References

  1. Brummer, E. C., G. L. Graef, J. Orf, J. R. Wilcox, and R. C. Shoemaker. 1997. Mapping QTL for seed protein and oil content in eight soybean populations. Crop Sci. 37 : 370-378 https://doi.org/10.2135/cropsci1997.0011183X003700020011x
  2. Chung J., H. L. Babka, G. L., P. E. Graef, D. J. Staswick, P. B. Lee, R. C. Cregan, R. C. Shoemaker, and J. E. Specht. 2003. The seed protein, oil, and yield QTL on soybean linkage group I. Crop Sci. 43 : 1053-1067 https://doi.org/10.2135/cropsci2003.1053
  3. Cianzio, S. R., W. R. Fehr, J. A. Hoeck, S. L. Johnson, R. C. Shoemaker, and G. A. Welke. 2003. Molecular marker analysis of seed size in soybean. Crop Sci. 43 : 68-74 https://doi.org/10.2135/cropsci2003.0068
  4. Cregan, P. B. 1999. DNA markers, maps, and technologies. Proceeding of world soybean research conference VI : pp. 46-61
  5. Devine, T. E., T. C. Kilen, and J. J. O'Neill. 1991. Genetic linkage of the Phytophtora resistance gene Rps2 and the modulation response gene Rj2 in the Soybean. Crop Sci. 31 : 713-715 https://doi.org/10.2135/cropsci1991.0011183X003100030034x
  6. Hartwing, E. E. 1973. Varietal development. P. 187-207. In B. E. Caldwell(ed.) Soybeans: Improvement, production, and uses. Agron. Monogr. 16. ASA, Madison. WI
  7. Hoecka, J. A., W. R. Fehr, R. C. Shoemaker, G. A. Welkea, S. L. Johnson, and S. R. Cianioa. 2003. Molecular marker analysis of seed size in soybean. Crop Sci. 43 : 68-74 https://doi.org/10.2135/cropsci2003.0068
  8. Holt, S. 1997. Soya: The health food of the next millenium, Korean Soybean Digest. 14(2) : 77-90
  9. Kim, H. S., S. H. Lee, and Y. H. Lee. 2000. A genetic linkage map of soybean with RFLP, RAPD, SSR and morphological markers. Kor J. Crop Sci. 45(2) : 123-127
  10. Keim, P., B. W. Diers, T. C. Olson, and R. C. Shoemaker. 1990. RFLP mapping in soybean: Association between maker loci and variation in quantitative traits. Genetics. 126 : 735-742
  11. Keim, P., R. C. Shoemaker, R. G. Palmer. 1996. A high density soybean genetic map based on AFLP. Crop Sci. 36 : 786-792
  12. Lander, E. S., P. Green, J. Abrahamson, A. Barlow, M. J. Day, S. E. Lincoln, and L. Newberg 1987. Mapmaker: an Interactive computer package for constructing primary genetic linkage map of experimental and natural populations. Genomics 1 : 174-181 https://doi.org/10.1016/0888-7543(87)90010-3
  13. Lark, K. G., J. Orf, and Mansur, L. M. 1994. Epistatic expression of quantitative trait loci (QTL) in soybean (Glycine max L. Merr) determined by QTL association with RFLP alleles. Theor. Appl. Genet. 86 : 901-906
  14. Lee, S. H. 2001. Analysis of QTL for pod dehiscence based on molecular map in soybean. J. of Agri. & Life Science 5 : 16-18
  15. Lee, S. H., M. A. Bailey, M. A. R. Mian, E. R. Shipe, D. A. Ashley, W. A. Parrott, R. S. Hussey, and H. R. Boerma. 1996a. Identification of quantitative trait loci for plant height, lodging, and maturity in a soybean population segregating for growth habit. Theor. Appl. Genet. 92 : 516-523 https://doi.org/10.1007/BF00224553
  16. Lee, S. H., M. A. Bailey, M. A. R. Mian, T. E. Carter, E. R. Shipe, D. A. Ashley, W. A. Parrott, R. S. Hussey, and H. R. Boerma. 1996b. RFLP loci associated with soybean seed protein and oil content across populations and locations. Theor. Appl. Genet. 93 : 649-657 https://doi.org/10.1007/BF00224058
  17. Lee, S. H., K. R. Park, Y. H. Ryu, and S. D. Kim. 1997. Construction and integration of soybean RFLP genetic linkage maps. Korean J. of Breeding 29(3) : 282-288
  18. Liu, B., T., Fujita., Z. H. Yan, S. Sakamoto, D. Xu, and J. Abe. 2007. QTL mapping of domestication-related traits in Soybean (Glycine max). Annals of Botany. 100:1027-1038 https://doi.org/10.1093/aob/mcm149
  19. Mansur, L. M., J. H. Orf, K. Chase, T. Jarvik, P. B. Cregan, and K. G. Lark. 1996. Genetic mapping of agronomic traits using recombinant inbred lines of soybean (Glycine max (L.) Merr). Crop Sci. 36 : 1327-1336 https://doi.org/10.2135/cropsci1996.0011183X003600050042x
  20. Murray, M. G. and W. F. Thompson. 1980. Rapid isolation of high molecular weight plant DNA. Nucleic Acids Res. 18 : 4321-4325
  21. Maughan P. J., M. A. Saghai Maroof, and G. R. Buss. 1996. Molecular-marker analysis of seed-weight:genomic locations, gene action, and evidence for orthologous evolution among three legume species. Theor. Appl. Genet. 93 : 574-579 https://doi.org/10.1007/BF00417950
  22. Mian M. A. R., M. A. Bailey, J. P. Tamulonis, E. R. Shipe, T. E. Carter, J. W. A. Parrott, D. A. Ashley, R. S. Hussey, and H. R. Borema 1996. Molecular markers associated with seed weight in two soybean populations. Theor. Appl. Genet. 93 : 1011-1016 https://doi.org/10.1007/BF00230118
  23. Muehlbauer, G. J., J. E. Specht, P. E. Staswick, G. L. Graef, and M. A. Thomas-Compton. 1989. Application of the near isogenic line gene mapping techniques to isozyme markers. Crop Sci. 29 : 1548-1553 https://doi.org/10.2135/cropsci1989.0011183X002900060048x
  24. Nelson, J. C. 1997. QGENE: software for marker-based genome analysis and breeding. Mol. Breed. 3 : 239-245 https://doi.org/10.1023/A:1009604312050
  25. Orf, J. H., K. Chase, F. R. Alder, L. M. Mansur, and K. G. Lark 1999. Genetics of soybean agronomic traits; $\Pi$ Interaction between yield quantitative trait loci in soybean. Crop Sci. 39 : 1652-1657 https://doi.org/10.2135/cropsci1999.3961652x
  26. Owen, F. V. 1928. Inheritance studies in soybean. III. seedcoat color and summary of all other mendelian characters thus far reported. Genetics 13 : 50-79
  27. Palmer, R. G. and Y. T. Kiang. 1990. Linkage map of soybean (Glycine max L.). Cold spring Harbor Laboratory, Cold Spring Harbor, NY
  28. Palmer, R. G. and T. C. Kilen. 1987. Qualitative genetics and cytogenetics. In: J. R. wilcox (Ed.) Soybeans: Improvement, Production, and Uses, 2nd ed. (Agronomy Monograph 16), ASA, CSSA and SSSA, Madison, WI, pp. 135-156
  29. Palmer, R. G., S. M. Lim, and R. G. Hedhes. 1992. Testing for linkage between the Rxp locus and nine isozyme loci in soybean. Crop Sci. 32 : 681-683 https://doi.org/10.2135/cropsci1992.0011183X003200030020x
  30. Park, K. Y., Y. H. Lee, S. D. kim, and E. H. Hong. 2000. Review and future planning for soybean breeding in Korea. Korea Soybean Digest. 17(1) : 13-26
  31. Shoemaker, R.C. and T. C. Olson. 1993. Molecular linkage map of soybean (Glycine max (L.) Merr). p. 6131-6138. In S. J. O'Brien (ed.) Genetic maps: Locus maps of complex genomes. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York
  32. Shoemaker, R. C. and J. E. Specht 1995. Integration of the soybean molecular and classical genetic linkage groups. Crop Sci. 35 : 436- 446 https://doi.org/10.2135/cropsci1995.0011183X003500020027x
  33. Smith, K. J., and W. Huyser. 1987. World Distribution and Significance of Soybean. In: Soybeans: Improvement, Production, and Uses; Second Edition. Ed. J. R. Wilcox. (Agronomy Monograph 16), ASA, CSSA and SSSA, Madison, WI, pp. 1-22
  34. So, E. H., J. H. Ku , K. Y. Park, and Y. H. Lee. 2001. Varietal difference of isoflavone content and antioxidant activity in soybean. Korean J. of Breeding. 33(1) : 35-39
  35. Specht, J. E., K. Chase, M. Macrander, G. L. Craef, J. Chung, J. P. Markwell, M. Cermann, J. H. Orf, and K. G. Lark 2001. Soybean response to water: QTL analysis of drought tolerance. Crop Sci. 41 : 493-509 https://doi.org/10.2135/cropsci2001.412493x
  36. Stephens, P. A. and C. D. Nickel. 1992. inheritance of pink flower in soybean. Crop Sci. 32 : 1131-1132 https://doi.org/10.2135/cropsci1992.0011183X003200050012x
  37. Sullivan, P. 2003. Edible soybean production and marketing. Curre. Topi. C.T. 171 pp. 1-3
  38. Tasma, I. M., L. L. Lorenzen, D. E. Green, and R. C. Shoemaker. 2001. Mapping genetic loci for flowering times, maturity and photoperiod insensitivity in soybean. Mol Breed. 8 : 25-35 https://doi.org/10.1023/A:1011998116037
  39. Toda, K., D. Yang, N. Yamanaka, S. Watanabe, K. Harada, and R. Takahashi. 2002. A single-base deletion in soybean flavonoid 3'-hydroxylase gene is associated with gray pubescence color. Plant Mol. Biol. 50 : 187-196 https://doi.org/10.1023/A:1016087221334
  40. Watanabe, S., T. Tajuddin, N. Yamanaka, M. Hayashi, and K. Harada. 2004. Analysis of QTLs for reproductive development and seed quality traits in soybean using recombinant inbred lines. Breeding Science 54 : 399-407 https://doi.org/10.1270/jsbbs.54.399
  41. Zhang, W. K., Y. J. Wang, and G. Z. Luo. 2004. QTL mapping of ten agronomic traits on the soybean genetic map and their association with EST markers. Theor. Appl. Genet. 108 : 1131-1139 https://doi.org/10.1007/s00122-003-1527-2