• Title/Summary/Keyword: I'm

Search Result 17,633, Processing Time 0.047 seconds

SYSTEMS OF DERIVATIONS ON BANACH ALGEBRAS

  • Lee, Eun-Hwi
    • Communications of the Korean Mathematical Society
    • /
    • v.12 no.2
    • /
    • pp.251-256
    • /
    • 1997
  • We show that a strong system of derivations ${D_0, D_1,\cdots,D_m}$ on a commutative Banach algebra A is contained in the radical of A if it satisfies one of the following conditions for separating spaces; (1) $\partial(D_i) \subseteq rad(A) and \partial(D_i) \subseteq K D_i(rad(A))$ for all i, where $K D_i(rad(A)) = {x \in rad(A))$ : for each $m \geq 1, D^m_i(x) \in rad(A)}$. (2) $(D^m_i) \subseteq rad(A)$ for all i and m. (3) $\bar{x\partial(D_i)} = \partial(D_i)$ for all i and all nonzero x in rad(A).

  • PDF

Effect of Monosodium Glutamate and Temperature Change on the Content of Free Amino Acids in Kimchi (Monosodium Glutamate와 숙성온도 변화가 김치의 유리아미노산 함량에 미치는 영향)

  • 이예경;이명예;김순동
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.33 no.2
    • /
    • pp.399-404
    • /
    • 2004
  • This study was conducted to investigate the effect of monosodium glutamate (MSG) and fermentation methods (C-I; fermented for 5 days at 1$0^{\circ}C$ after 2$0^{\circ}C$ fermentation for 2 days, C-II; fermented for 7 days at 1$0^{\circ}C$, M-I; kimchi with MSG fermented for 5 days at 1$0^{\circ}C$ after 2$0^{\circ}C$ fermentation for 2 days, M-II; kimchi with MSG fermented for 7 days at 1$0^{\circ}C$ on fermentation and free amino acid content. Fermentation of M-I and M-II was slightly delayed compared to C-I and C-II. Total microbe of C-I and C-IIwere lower than those of M-I and M-II, and lactic acid bacteria of C-I and C-II were lower than those of M-I and M-II respectively. The major free amino acids were alanine, asparagine, homocystine and valine in C-I, especially, glutamic acid and ornithine were high in C-II. Homocystine, alanine, asparagine and valine in M-I, glutamic acid, alanine, hydroxyproline, asparagine, homocystine, ornithine and valine were the major free amino acid in M-II, respectively. The sour taste of M-I and M-II was lower than those of C-I and C-II, respectively, and the effect of delaying fermentation at 1$0^{\circ}C$ did not showed in the C-I and M-I. The crispy taste of the M-I and M-II was higher than those of C-I and C-II, which was the opposite results of sour taste. Palatable and overall taste of M-I and M-II were higher than those of C-I and C-II, respectively These results suggest that the MSG in kimchi affect not only increment of free amino acid content but also shelf-life and taste improvement, and continuous fermentation at 1$0^{\circ}C$ also enhance the content of free amino acid and shelf-life of kimchi.

The Effects of Dead Time and Its Correction Methods for Thyroid Prode using $^{99m}Tc$, $^{123}I$, $^{131}I$ ($^{99m}Tc$, $^{123}I$, $^{131}I$을 이용한 갑상선 탐침의 계수 불능시간영향의 특성과 그의 보정 방법에 관한 연구)

  • 손혜경;김희중;나상균;이희경
    • Progress in Medical Physics
    • /
    • v.7 no.1
    • /
    • pp.79-89
    • /
    • 1996
  • The purpose of this study was to examine the dead time effects and derive the correction factor. Using the thyroid probe and lucite cylindrical phantom, $^{99m}Tc$ 10.50mCi and $^{123}I$ 2.08mCi were counted with medical spectrometer at intervals of 2 hours for 43hrs and 79 hours. respectively. $^{123}I$ 2.06mCi was counted at intervals of 6 hours for 910 hours. To measure the starting point of dead time effect, the radioactivity was measured with dose calibrator in each time. The dead time effects started at about 0.80mCi at all distances for $^{99m}Tc$, and about 1.00mCi for $^{123}I$. The radioactivity corresponding to 20% counts loss is 1.29(center), 1.28(2cm), 1.31(4cm), 1.13(6cm)mCi for $^{99m}Tc$ and 1.39mCi for $^{123}I$. The correction factors for 2mCi of radioactivity as an example were 1.52(center), 1.52(2cm), 1.50(4cm), 1.58(6cm) for $^{99m}Tc$ and 1.58 for $^{123}I$.

  • PDF

SOME GENERALIZATIONS OF M-FINITE BANACH SPACES

  • Cha, Jae-Sun;Jung, Kap-Hun
    • The Pure and Applied Mathematics
    • /
    • v.3 no.2
    • /
    • pp.155-162
    • /
    • 1996
  • We will show that let X and Y be M -finite Banach spaces with canonical M-decompositions $X{\cong}{{\prod}^{{\gamma}_{\infty}}_{i=1}}{X^{n_i}}_{i}\;and\;Y{\cong}{{\prod}^{{\bar{\gamma}}_{\infty}}_{j=1}}{\tilde{Y}^{m_j}}_{j}$, respectively and M and N nonzero locally compact Hausdorff spaces. Then I : $C_{0}$(M,X) ${\longrightarrow}\;C_{0}$(N,Y) is an isometrical isomorphism if and only if r = $\bar{r}$ and there are permutation and homeomorphisms and continuous maps such that I = ${I^{-1}}_{N.Y}\;{\circ}I_{w}^{-1}{\circ}({{\prod}^{\gamma}}_{i=1}I_{t_i,u_i}){\circ}I_{M,X}$.

  • PDF

Changes in the Growth and Quality of Creeping Bentgrass (Agrostis palustris Huds. 'Penn A1') Following Gibberelinic Acid (GA3) Treatment (지베렐린산(GA3) 처리에 따른 크리핑 벤트그래스 (Agrostis palustris Huds. 'Penn A1')의 생장 및 품질 변화)

  • Woo-Sung Kim;Tae-Wooung Kim;Young-Sun Kim;Chi-Hwan Lim
    • Korean Journal of Environmental Agriculture
    • /
    • v.42 no.4
    • /
    • pp.389-395
    • /
    • 2023
  • This study evaluated the effects of gibberellic acid (GA3) on the growth and quality of creeping bentgrass (Agrostis palustris Huds.). Experimental treatments included a No application of fertilizer and GA3 (NFG) Control [3 N active ingredient (a.i.) g/m2], 0.3GA3 (GA3 0.3 a.i. mg/m2/200 mL), 0.6GA3 (GA3 0.6 a.i. mg/m2/200 mL), 1.2GA3 (GA3 1.2 a.i. mg/m2/200 mL), and 2.4GA3 (GA3 2.4 a.i. mg/m2/200 mL). Additionally, the study included a 1.5N+GA3 experiment with similar GA3 treatments combined with 1.5N a.i. g/m2 : NFG, Control (3N a.i. g/m2), 1.5N+ 0.3GA3 (1.5N a.i. g/m2+GA3 0.3 a.i. mg/m2/200 mL), 1.5N+0.6GA3 (1.5N a.i. g/m2+GA3 0.6 a.i. mg/m2/200 mL), 1.5N+1.2GA3 (1.5N a.i. g/m2+GA3 1.2 a.i. mg/m2/ 200 mL), and 1.5N+2.4GA3 (1.5N a.i. g/m2+GA3 2.4 a.i. mg/m2/200 mL). Compared to the NFG, turf color index chlorophyll content was not significantly different (p< 0.05). However, shoot length in 1.2GA3, 2.4GA3, 1.5N+0.3GA3, 1.5N+0.6GA3, 1.5N+1.2GA3, and 1.5N+2.4GA3 treatments increased by 0.8%, 10.6%, 5.15%, 8.3%, 13.5 %, and 21.6%, respectively, compared to the control. As compared to the control, clipping yield in 1.5N+1.2GA3 and 1.5N+2.4GA3 treatments increased by 7.1% and 14.3 %, respectively. These results indicated that GA3 application increased shoot length, with the 1.2GA3 treatment showing shoot length similar to the control (3N a.i. g /m2 ).

RESULTS OF CERTAIN LOCAL COHOMOLOGY MODULES

  • Mafi, Amir;Talemi, Atiyeh Pour Eshmanan
    • Bulletin of the Korean Mathematical Society
    • /
    • v.51 no.3
    • /
    • pp.653-657
    • /
    • 2014
  • Let R be a commutative Noetherian ring, I and J two ideals of R, and M a finitely generated R-module. We prove that $$Ext^i{_R}(R/I,H^t{_{I,J}}(M))$$ is finitely generated for i = 0, 1 where t=inf{$i{\in}\mathbb{N}_0:H^2{_{I,J}}(M)$ is not finitely generated}. Also, we prove that $H^i{_{I+J}}(H^t{_{I,J}}(M))$ is Artinian when dim(R/I + J) = 0 and i = 0, 1.

ON ENDOMORPHISM RING OF H-INVARIANT MODULES

  • Bae, Soon-Sook
    • East Asian mathematical journal
    • /
    • v.6 no.2
    • /
    • pp.167-182
    • /
    • 1990
  • The relationships between submodules of a module and ideals of the endomorphism ring of a module had been studied in [1]. For a submodule L of a moudle M, the set $I^L$ of all endomorphisms whose images are contained in L is a left ideal of the endomorphism ring End (M) and for a submodule N of M, the set $I_N$ of all endomorphisms whose kernels contain N is a right ideal of End (M). In this paper, author defines an H-invariant module and proves that every submodule of an H-invariant module is the image and kernel of unique endomorphisms. Every ideal $I^L(I_N)$ of the endomorphism ring End(M) when M is H-invariant is a left (respectively, right) principal ideal of End(M). From the above results, if a module M is H-invariant then each left, right, or both sided ideal I of End(M) is an intersection of a left, right, or both sided principal ideal and I itself appropriately. If M is an H-invariant module then the ACC on the set of all left ideals of type $I^L$ implies the ACC on M. Also if the set of all right ideals of type $I^L$ has DCC, then H-invariant module M satisfies ACC. If the set of all left ideals of type $I^L$ satisfies DCC, then H-invariant module M satisfies DCC. If the set of all right ideals of type $I_N$ satisfies ACC then H-invariant module M satisfies DCC. Therefore for an H-invariant module M, if the endomorphism ring End(M) is left Noetherian, then M satisfies ACC. And if End(M) is right Noetherian then M satisfies DCC. For an H-invariant module M, if End(M) is left Artinian then M satisfies DCC. Also if End(M) is right Artinian then M satisfies ACC.

  • PDF

RATIONAL DIFFERENCE EQUATIONS WITH POSITIVE EQUILIBRIUM POINT

  • Dubickas, Arturas
    • Bulletin of the Korean Mathematical Society
    • /
    • v.47 no.3
    • /
    • pp.645-651
    • /
    • 2010
  • In this note we study positive solutions of the mth order rational difference equation $x_n=(a_0+\sum{{m\atop{i=1}}a_ix_{n-i}/(b_0+\sum{{m\atop{i=1}}b_ix_{n-i}$, where n = m,m+1,m+2, $\ldots$ and $x_0,\ldots,x_{m-1}$ > 0. We describe a sufficient condition on nonnegative real numbers $a_0,a_1,\ldots,a_m,b_0,b_1,\ldots,b_m$ under which every solution $x_n$ of the above equation tends to the limit $(A-b_0+\sqrt{(A-b_0)^2+4_{a_0}B}$/2B as $n{\rightarrow}{\infty}$, where $A=\sum{{m\atop{i=1}}\;a_i$ and $B=\sum{{m\atop{i=1}}\;b_i$.

ALMOST COHEN-MACAULAYNESS OF KOSZUL HOMOLOGY

  • Mafi, Amir;Tabejamaat, Samaneh
    • Bulletin of the Korean Mathematical Society
    • /
    • v.56 no.2
    • /
    • pp.471-477
    • /
    • 2019
  • Let (R, m) be a commutative Noetherian ring, I an ideal of R and M a non-zero finitely generated R-module. We show that if M and $H_0(I,M)$ are aCM R-modules and $I=(x_1,{\cdots},x_{n+1})$ such that $x_1,{\cdots},x_n$ is an M-regular sequence, then $H_i(I,M)$ is an aCM R-module for all i. Moreover, we prove that if R and $H_i(I,R)$ are aCM for all i, then R/(0 : I) is aCM. In addition, we prove that if R is aCM and $x_1,{\cdots},x_n$ is an aCM d-sequence, then depth $H_i(x_1,{\cdots},x_n;R){\geq}i-1$ for all i.

Expanding Generalized Hadamard Matrices over $G^m$ by Substituting Several Generalized Hadamard Matrices over G

  • No, Jong-Seon;Song, Hong-Yeop
    • Journal of Communications and Networks
    • /
    • v.3 no.4
    • /
    • pp.361-364
    • /
    • 2001
  • Over an additive abelian group G of order g and for a given positive integer $\lambda$, a generalized Hadamard matrix GH(g, $\lambda$) is defined as a gλ$\times$gλ matrix[h(i, j)], where 1 $\leq i \leqg\lambda and 1 \leqj \leqg\lambda$, such that every element of G appears exactly $\lambd$atimes in the list h($i_1, 1) -h(i_2, 1), h(i_1, 2)-h(i_2, 2), …, h(i_1, g\lambda) -h(i_2, g\lambda), for any i_1\neqi_2$. In this paper, we propose a new method of expanding a GH(g^m, \lambda_1) = B = [B_{ij}] over G^m$ by replacing each of its m-tuple B_{ij} with B_{ij} + GH(g, $\lambda_2) where m = g\lambda_2. We may use g^m/\lambda_1 (not necessarily all distinct) GH(g, \lambda_2$)s for the substitution and the resulting matrix is defined over the group of order g.

  • PDF