• Title/Summary/Keyword: Hyperspectral Data

Search Result 201, Processing Time 0.024 seconds

Reflectance Measurements of Soil Variability

  • Sudduth, K.A.;Hong, S.Y.;Hummel, J.W.;Kitchen, N.R.
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.1194-1196
    • /
    • 2003
  • Variations in soil physical and chemical properties can affect agricultural productivity and the environmental implications of crop production. These variations are present and may be important at regional, field, and sub-field (precision agriculture) scales. Because traditional measurements are time-consuming and expensive, reflectance-based estimates of soil properties such as texture, organic matter content, water content, and nutrient status are attractive. Soil properties have been related to reflectance measured with laboratory, in-field, airborne, and satellite sensors. Both multispectral and hyperspectral instruments have been used, with both natural and artificial illumination. Varying levels of accuracy have been obtained, with the best results (r > 0.95) using hyperspectral reflectance data to estimate soil organic matter and water content.

  • PDF

Comparative Study on Hyperspectral and Satellite Image for the Estimation of Chlorophyll a Concentration on Coastal Areas (연안 해역의 클로로필 농도 추정을 위한 초분광 및 위성 클로로필 영상 비교 연구)

  • Shin, Jisun;Kim, Keunyong;Ryu, Joo-Hyung
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.2_2
    • /
    • pp.309-323
    • /
    • 2020
  • Estimation of chlorophyll a concentration (CHL) on coastal areas using remote sensing has been mostly performed through multi-spectral satellite image analysis. Recently, various studies using hyperspectral imagery have been attempted. In particular, airborne hyperspectral imagery is composed of hundreds of bands with a narrow band width and high spatial resolution, and thus may be more effective in coastal areas than estimation of CHL through conventional satellite image. In this study, comparative analysis of hyperspectral and satellite-based CHL images was performed to estimate CHL in coastal areas. As a result of analyzing CHL and seawater spectrum data obtained by field survey conducted on the south coast of Korea, the seawater spectrum with high CHL peaked near the wavelength bands of 570 and 680 nm. Using this spectral feature, a new band ratio of 570 / 490 nm for estimating CHL was proposed. Through regression analysis between band ratio and the measured CHL were generated new CHL empirical formula. Validation of new empirical formula using the measured CHL showed valid results, with R2 of 0.70, RMSE of 2.43 mg m-3, and mean bias of 3.46 mg m-3. As a result of applying the new empirical formula to hyperspectral and satellite images, the average RMSE between hyperspectral imagery and the measured CHL was 0.12 mg m-3, making it possible to estimate CHL with higher accuracy than multi-spectral satellite images. Through these results, it is expected that it is possible to provide more accurate and precise spatial distribution information of CHL in coastal areas by utilizing hyperspectral imagery.

Evaluation for applicability of river depth measurement method depending on vegetation effect using drone-based spatial-temporal hyperspectral image (드론기반 시공간 초분광영상을 활용한 식생유무에 따른 하천 수심산정 기법 적용성 검토)

  • Gwon, Yeonghwa;Kim, Dongsu;You, Hojun
    • Journal of Korea Water Resources Association
    • /
    • v.56 no.4
    • /
    • pp.235-243
    • /
    • 2023
  • Due to the revision of the River Act and the enactment of the Act on the Investigation, Planning, and Management of Water Resources, a regular bed change survey has become mandatory and a system is being prepared such that local governments can manage water resources in a planned manner. Since the topography of a bed cannot be measured directly, it is indirectly measured via contact-type depth measurements such as level survey or using an echo sounder, which features a low spatial resolution and does not allow continuous surveying owing to constraints in data acquisition. Therefore, a depth measurement method using remote sensing-LiDAR or hyperspectral imaging-has recently been developed, which allows a wider area survey than the contact-type method as it acquires hyperspectral images from a lightweight hyperspectral sensor mounted on a frequently operating drone and by applying the optimal bandwidth ratio search algorithm to estimate the depth. In the existing hyperspectral remote sensing technique, specific physical quantities are analyzed after matching the hyperspectral image acquired by the drone's path to the image of a surface unit. Previous studies focus primarily on the application of this technology to measure the bathymetry of sandy rivers, whereas bed materials are rarely evaluated. In this study, the existing hyperspectral image-based water depth estimation technique is applied to rivers with vegetation, whereas spatio-temporal hyperspectral imaging and cross-sectional hyperspectral imaging are performed for two cases in the same area before and after vegetation is removed. The result shows that the water depth estimation in the absence of vegetation is more accurate, and in the presence of vegetation, the water depth is estimated by recognizing the height of vegetation as the bottom. In addition, highly accurate water depth estimation is achieved not only in conventional cross-sectional hyperspectral imaging, but also in spatio-temporal hyperspectral imaging. As such, the possibility of monitoring bed fluctuations (water depth fluctuation) using spatio-temporal hyperspectral imaging is confirmed.

Features Extraction of Remote Sensed Multispectral Image Data Using Rough Sets Theory (Rough 집합 이론을 이용한 원격 탐사 다중 분광 이미지 데이터의 특징 추출)

  • 원성현;정환묵
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.8 no.3
    • /
    • pp.16-25
    • /
    • 1998
  • In this paper, we propose features extraction method using Rough sets theory for efficient data classifications in hyperspectral environment. First, analyze the properties of multispectral image data, then select the most efficient bands using discemibility of Rough sets theory based on analysis results. The proposed method is applied Landsat TM image data, from this, we verify the equivalence of traditional bands selection method by band features and bands selection method using Rough sets theory that pmposed in this paper. Finally, we present theoretical basis to features extraction in hyperspectral environment.

  • PDF

Effects of Spectral Transformations on Leaf C:N Ratio Inversion with Hyperspectral Data

  • Run-he, SHI;Da-fang, ZHUANG;Qiao-jing, QIAN;Zheng, NIU
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.322-324
    • /
    • 2003
  • Leaf C:N ratio is a new factor in the field of biochemical inversion with hyperspectral data. Effects of common-used spectral transformations including log(R), log(1/R), 1/R, etc. from 400nm to 2490nm on its inversion are compared. Results show that their effects on statistical modeling are not apparent. Continuum removal is used on original reflectance in the range of 2030nm to 2220nm, in which exists an apparent absorption peak due to cellulose, lignin, protein, etc. The effect is distinctive and tends to improve the precision of C:N ratio inversion. Further, it is a robust and physically based transformation.

  • PDF

한반도 지표형태에 대한 MODIS TOA Radiance 분석

  • Lee, Sun-Gu;Kim, Yong-Seung
    • Aerospace Engineering and Technology
    • /
    • v.2 no.1
    • /
    • pp.190-196
    • /
    • 2003
  • The top-of-atmosphere(TOA) radiance and its seasonal variation for various surface types have been analyzed using the MODIS direct broadcasting data acquired from the KARI ground station for the period between July 2002 and November 2003. The selected study areas considering the MODIS spatial resolution and the characteristics of the Korean peninsular are as follows: agricultural land, forest land, inland water, sea water, urban land, wetland, and atmosphere(cloud). The results showed that TOA radiances depend on the surface characteristics for the selected sample areas. Furthermore, the MODIS observations appear to well depict the general features of earth radiation properties. The authors hope that this study may provide the basic information on the analysis of hyperspectral data.

  • PDF

Application of Hyperion Hyperspectral Remote Sensing Data for Wildfire Fuel Mapping

  • Yoon, Yeo-Sang;Kim, Yong-Seung
    • Korean Journal of Remote Sensing
    • /
    • v.23 no.1
    • /
    • pp.21-32
    • /
    • 2007
  • Fire fuel map is one of the most critical factors for planning and managing the fire hazard and risk. However, fuel mapping is extremely difficult because fuel properties vary at spatial scales, change depending on the seasonal situations and are affected by the surrounding environment. Remote sensing has potential to reduce the uncertainty in mapping fuels and offers the best approach for improving our abilities. Especially, Hyperspectral sensor have a great potential for mapping vegetation properties because of their high spectral resolution. The objective of this paper is to evaluate the potential of mapping fuel properties using Hyperion hyperspectral remote sensing data acquired in April, 2002. Fuel properties are divided into four broad categories: 1) fuel moisture, 2) fuel green live biomass, 3) fuel condition and 4) fuel types. Fuel moisture and fuel green biomass were assessed using canopy moisture, derived from the expression of liquid water in the reflectance spectrum of plants. Fuel condition was assessed using endmember fractions from spectral mixture analysis (SMA). Fuel types were classified by fuel models based on the results of SMA. Although Hyperion imagery included a lot of sensor noise and poor performance in liquid water band, the overall results showed that Hyperion imagery have good potential for wildfire fuel mapping.

Mosaic image generation of AISA Eagle hyperspectral sensor using SIFT method (SIFT 기법을 이용한 AISA Eagle 초분광센서의 모자이크영상 생성)

  • Han, You Kyung;Kim, Yong Il;Han, Dong Yeob;Choi, Jae Wan
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.31 no.2
    • /
    • pp.165-172
    • /
    • 2013
  • In this paper, high-quality mosaic image is generated by high-resolution hyperspectral strip images using scale-invariant feature transform (SIFT) algorithm, which is one of the representative image matching methods. The experiments are applied to AISA Eagle images geo-referenced by using GPS/INS information acquired when it was taken on flight. The matching points between three strips of hyperspectral images are extracted using SIFT method, and the transformation models between images are constructed from the points. Mosaic image is, then, generated using the transformation models constructed from corresponding images. Optimal band appropriate for the matching point extraction is determined by selecting representative bands of hyperspectral data and analyzing the matched results based on each band. Mosaic image generated by proposed method is visually compared with the mosaic image generated from initial geo-referenced AISA hyperspectral images. From the comparison, we could estimate geometrical accuracy of generated mosaic image and analyze the efficiency of our methodology.

An Analytical Investigation on the Dancheong Pigments by Hyperspectral Technique: Focusing on Green Colors

  • Jung, Cham Hee;Lee, Han Hyoung;Song, You Na;Min, Kyeong Jin;Chung, Yong Jae
    • Journal of Conservation Science
    • /
    • v.35 no.4
    • /
    • pp.345-361
    • /
    • 2019
  • This study demonstrates the application of hyperspectral analysis as a pigment identification method for modern and contemporary Dancheong, the polychrome surface on traditional Korean wooden buildings. In particular, green pigments are the focus of this study. Green pigments in modern and contemporary Dancheong have the largest variation of materials and show a noticeable timeline. Thus, they are most suitable for estimating the manufacture or restoration period of Dancheong. Hyperspectral analysis is a noncontact, long-distance measurement technique that has advantages in the field of Dancheong analysis. It is capable of identifying both organic and inorganic pigments, unlike existing analysis methods. For this experiment, green and other pigments used during the modern and contemporary era were selected and made into painted samples under various mixing conditions that reflect their actual uses. Through hyperspectral analysis, their reflectance characteristics were observed, which enables the derivation of four main features that can distinguish the type of pigments used for color mixture. Based on these, a pigment identification system was designed in the form of a flowchart, and its utility was confirmed through site application. Despite some limitations at this stage, the technique can be complemented by considering proper measurement methods or the continuous accumulation of samples and data. If a database on various materials, mixing ratios, painting techniques, and other external interference factors is developed in future research, it would provide the foundation for a faster and safer analysis environment of Dancheong sites.

Lossless Compression for Hyperspectral Images based on Adaptive Band Selection and Adaptive Predictor Selection

  • Zhu, Fuquan;Wang, Huajun;Yang, Liping;Li, Changguo;Wang, Sen
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.8
    • /
    • pp.3295-3311
    • /
    • 2020
  • With the wide application of hyperspectral images, it becomes more and more important to compress hyperspectral images. Conventional recursive least squares (CRLS) algorithm has great potentiality in lossless compression for hyperspectral images. The prediction accuracy of CRLS is closely related to the correlations between the reference bands and the current band, and the similarity between pixels in prediction context. According to this characteristic, we present an improved CRLS with adaptive band selection and adaptive predictor selection (CRLS-ABS-APS). Firstly, a spectral vector correlation coefficient-based k-means clustering algorithm is employed to generate clustering map. Afterwards, an adaptive band selection strategy based on inter-spectral correlation coefficient is adopted to select the reference bands for each band. Then, an adaptive predictor selection strategy based on clustering map is adopted to select the optimal CRLS predictor for each pixel. In addition, a double snake scan mode is used to further improve the similarity of prediction context, and a recursive average estimation method is used to accelerate the local average calculation. Finally, the prediction residuals are entropy encoded by arithmetic encoder. Experiments on the Airborne Visible Infrared Imaging Spectrometer (AVIRIS) 2006 data set show that the CRLS-ABS-APS achieves average bit rates of 3.28 bpp, 5.55 bpp and 2.39 bpp on the three subsets, respectively. The results indicate that the CRLS-ABS-APS effectively improves the compression effect with lower computation complexity, and outperforms to the current state-of-the-art methods.